

A Trading Agent and Simulator for Keyword Auctions

Abstract

We describe the lessons learned in deploying an

intelligent trading agent for electronic Pay-Per-Click

keyword auctions. Our discussion focuses upon the

technical challenges in developing the bid

management framework – an extensive internet

communications infrastructure and database used to

query market quotes, store data, and submit bids. In

addition to the production system, we have also built

an auction simulator for demonstration and testing

purposes. The simulator allows the specification of a

population of competitor bidding agents as tiny C#

programs, which are dynamically compiled at run-

time and run in the simulation. Through this

simulator we present scenarios which demonstrate

both the richness of our trading agent, and also some

interesting scenarios in electronic auctions.

1. Introduction

A Pay per click (PPC) search auction is an auction

for sponsored positions in search engines. For

instance, if a user types in a search for “masters

degree” at Google, they will get back a set of listings.

These include sponsored sites which have paid on a

PPC auction to have their companies shown.

PPC auctions run every minute of the day for

every possible character sequence. In each auction, a

competitor p enters a bid bk
(p)

 which is the amount

they are willing to pay should a customer click on

their advertisement in the search results for keyword

k. The auctioneer (eg. Google) sorts the bids for

keyword/auction k and awards position 1 to the

highest bid, position 2 to the second highest bid, and

so on. The participant will then pay an amount equal

to the number of customers who visit their web-site

multiplied by their bid price.

This paper will discuss the lessons learned in

developing a successful trading agent for PPC

auctions. The agent is fully deployed and managing

funds for nearly four thousand auctions. We relate

experiences that may be relevant to other trading

agent/auction projects. We also illustrate our system

using a simulator which we have developed for

demonstration and testing. Using the simulator we

construct scenarios which show the performance of

different trading strategies.

2. Agent

The iProspect bidding agent is responsible for

choosing prices on a portfolio of PPC auctions, at

every hour during the day, such that an objective is

maximized, its budget is not exceeded, and other

user-defined price and cost constraints are achieved.

The agent can optimize profit, revenue, traffic or

acquisitions. The agent maximizes its objective by

predicting market demand and price over T future

hours, and for every conceivable position on each

auction using parameterized functions. After doing

this, the agent finds a vector of bids that optimize its

objective. Bids for the next T hours are computed, but

only the bids for the current hour are submitted to the

auction. The extra work of budgeting for the next T

hours forces the agent to plan ahead. The

optimization problem is solved using steepest ascent.

The optimization algorithm is supplemented by a

variety of user definable rules. Many of the rules

function as mathematical constraints for the

optimizer. For instance, a bid-max rule forms an

upper bound on the price of a keyword. The budget

forms another constraint. A more complete

description of the bidding algorithm can be found in

[5].

The system presently manages 3,771 auctions and

a considerable amount of money. Bids may be

changed as fast as once per hour. The system

automatically adjusts its bidding for budget under-

shoots or over-shoots, time-of-day, competitor

activity, and so on. The system also automatically

explores the auction using an interval estimation-like

procedure [4]. The system reports on its performance

via a webpage with various monitoring graphs.

3. Bid Management Framework

In order to bid effectively, the agent needs to (a)

read the auction market state, (b) record conversion

events, (c) record data in a common database schema,

Brendan Kitts

iProspect

5 Water Street, Arlington, MA. USA

bkitts@excite.com

Benjamin J. LeBlanc

iProspect

5 Water Street, Arlington, MA. USA

bleblanc@iprospect.com

Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems, Vol. 1,

pp. 228-235, June 2004.

(d) execute the agent and (e) submit new bids to the

auction. All tasks except for (d) fall under the rubric

of the Bid Management Framework (BMF). The

technical challenges for the BMF were just as

numerous as those of the agent, and many of the

lessons learned should translate readily to other

trading agent systems.

The BMF operates on a Microsoft Windows

platform. SQLServer was used as the database. All

framework components were written in C# and rely

on the functionality supplied by Microsoft’s .NET

Framework. The .NET framework provided extensive

libraries for XML Serialization, Threading, and

Remoting in addition to a level of standardization and

comprehensiveness not found in Open Source

solutions. The MatLab programming language

(Mathworks) is used for the agent optimization

routines. These implementation decisions greatly

eased the development of each component.

The BMF can be divided into four parts: (1)

Database, (2) Communications layer, (3) Task

scheduler and (4) Conversion tracking system. We

describe each part in the following section.

3.1 Database

We maintain separate database schemas for each

auction in order to collect auction-specific data. For

instance, Google provides a bid-position estimation

utility that other auctions don’t provide. We also

maintain a single standard schema that provides a

standardized view of all of the auctions. This

standard schema allows components in the BMF and

agent to simplify their logic.

Database access is achieved through a series of

data abstraction layers. The first layer defines a series

of stored procedures found within the database

model. The second layer of abstraction comprises a

series of Data Access Classes (DAC) modeled on the

Data Transfer Object standard of [6]. DAC classes

are built on top of Microsoft’s ADO.NET data access

library.

3.2 Auction Communications

The BMF communicates with each auction

through an auction-specific Auction Service Gateway

(ASG). Each ASG is designed to encapsulate all

communication logic required by the auction and to

provide a simple mechanism for submitting requests

to the auction for all dependant components. Three

auctions are presently supported:

Overture: The ASG communicates with

Overture’s DirecTraffic Center® (DTC) via an XML

communication protocol [2]. This protocol defines a

set of command and response messages capable of

handling multiple requests at a time. Each set of

XML messages are passed back and forth over a

HTTPS connection. Overture’s DTC interface also

defines a set of restrictions and access fees based on

command count and frequency. The scheduler keeps

track of its access count and frequency to comply

with these restrictions.

Google: The ASG communicates with Google

Adwords™ using the HTTP protocol [3]. To

accommodate this type of interface, a set of classes

were developed which encapsulated the navigation

and parsing logic needed to submit requests for

reports from Google. Google has an access restriction

of 3 to 6 seconds per request, and the ASG complies

with these restrictions.

Simulated: The simulator is an external program

which runs independently and inserts market data

directly into the database allowing the agent to

function as if it were participating in a live auction.

3.3 Task Scheduler

The task scheduler is responsible for scheduling

the execution of both agent launch and database

synchronization tasks. Scheduling information is

stored in the database and monitored every few

minutes. Once it is determined that a task is ready for

execution, the task is marked as executing and a work

request is placed in the appropriate work queue.

Agent Launch Service: The agent launch service is

responsible for executing MatLab script by means of

a command line shell. Communication with this

service is accomplished through a closely monitored

work queue.

Database Synchronization Service: The database

synchronization service (DSS) is responsible for

synchronizing a BMF database and its remote auction

counterpart. The DSS implements two tasks: capture

of market-state and bid updates. Market state capture

involves gathering all data available about a keyword

including clicks, impressions, and time of quote. A

bid update involves submitting new bids for

keywords. Communication with this service is

accomplished through a work queue.

3.4 Conversion Tracking

The Conversion Tracking System provides a

means for capturing conversion events in real-time.

The Conversion Tracking System records two types

of events. When the customer first clicks on the PPC

listing, the customer is re-directed to a Conversion

Tracking Server which records the click, time, and

PPC listing, creates a cookie to identify the customer

session, and then sends the customer on to their

destination. Secondly, on conversion pages a special

Image tag sends a request to our Conversion tracking

server along with a query parameter that specifies the

revenue value of the conversion that has just

transpired. When our server receives this request it

knows that a conversion has occurred. Every fifteen

minutes, Conversion Tracking System data is

downloaded into our database, and from there

merged with other information that we have recorded

about the auction. This allows the agent to witness

changing market conditions and respond to consumer

behavior in near real-time.

4. Deployment Lessons

We learned a number of lessons that may be

generalizable to other trading agent implementations.

4.1 Rules

One of our earliest discoveries was the value of

rules as a way of constraining the optimization. The

potential for mischief in PPC auctions is staggering.

A single keyword put into the wrong position can

generate thousands of dollars in cost in just hours.

We have therefore developed safeguards to support

our automated bidding solution.

Constraints: Pricing rules were developed hold

prices to within a definable percentage of historical

prices. This was important for reproducing past

performance on an account that we were asked to

take over, before gradually improving performance.

As we monitored the account and verified that

optimizer’s actions were having the desired effect,

the constraints were able to be relaxed, allowing the

prices to move closer to their optimum settings

(figure 1).

Constrained 0.1

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

HistMedBid

O
ff

e
re

d
B

id

Constrained at 0.6

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

HistMedBid

O
ff

e
re

d
B

id

Figure 1. Account with prices constrained to within

10% of historical median, 60% of historical median.

Strategic auctions: Strategic auctions are

keywords that carry much of the profit or traffic to a

client. Strategic auctions exist in all client accounts

because revenue share per auction generally follows a

Zipf-like distribution (figure 2) – most of the revenue

is generated by a select few auctions. These auctions

are problematic because if conditions change this can

seriously affect a customer’s viability. Thus, like

securities trading, the secret to success is having a

diverse portfolio; an account with many moderate

performing auctions is better than an account with

one or two star performers.

In order to protect strategic auctions, we first

found and then put special rules in place for these

auctions. After this we monitored them as “bell-

weathers” to verify that these auctions were being

managed properly.

Revenue distribution

8.55%

30.84%

0.01%

0.10%

1.00%

10.00%

100.00%

0% 20% 40% 60% 80% 100%

% of keywords

%
 o

f
re

v
e

n
u

e

FOv9

FOv10

Figure 2. FOv10 is more vulnerable than FOv9,

because the former contains a strategic auction that is

responsible for 30% of the account’s revenue. The

arrival of a competitor on this auction could seriously

affect FOv10’s profitability.

4.2 Monitoring Systems

Failure logging, email notification, and auction

monitoring graphs were also important. Logs were

invaluable for identifying conditions that were

causing problems during our early testing. An auction

monitor system was created which collected several

dozen graphs on various aspects of the bidding,

including forecasts (eg. figure 3). These were

published to a webpage, so that each client account

could be monitored in real-time.

Figure 3. One of our monitoring graphs showing

average price of bids submitted in the past and

planned in the future. The arrow shows the start of

the bid plan. This client suspends bidding during

night-time and on weekends, and these shut-downs

can be seen in the forecast.

4.3 Constraints aren’t really fixed

When formulated as a numerical optimization

problem, the budget is traditionally thought of as a

quantity that is magically provided by the customer.

However, in reality, we discovered that the budget

was really an unknown for even our customers, and

they were interested in suggestions for what amount

might give them the best returns. Because the agent

had extensive models for every keyword auction, we

found that we could provide this kind of insight. The

what-if analysis can be performed by running under

hypothetical budgets, keyword-rules, or positions,

and observing the predicted impact on acquisitions,

clicks, position, and revenue under each condition,

based on the optimizer’s best bid allocation under

these constraints. An example what-if analysis is

shown in figure 4. This kind of analysis provided

clients with a deep understanding into the efficiency

of their programs. For instance, PPC auctions often

show diminishing returns as spending increases.

Using the what-if analysis, we found that we could

cut the spending of many clients in half and generate

almost as many acquisitions.

50 100 150 200 250 300

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

budget

lif
t

Effect of budget on profit, traffic and conversions

profit

conversions

clicks

bid

pos

Figure 4. What-if analysis for ten potential budgets.

Above a budget of $130 profit begins to decline as

positions are captured which are too expensive to

justify their cost. All metrics are the same scale, with

the value at budget of $20 equal to 1.0.

5. Multi-agent Simulator

The simulator module is a Visual C# system that

allows the production system to be taken off-line and

tested in a safe environment. The simulator module

reads and writes to the same database tables that are

used in production. This allows the switch from

production to test environment to be seamless from

the perspective of the agent.

A simulator file defines the parameters of the

simulation. The simulator file is written using the

XML standard format [2] and defines a number of

functions. These include:

Duration: The length of time for which the

simulator will be running.

ClickTotal(k,t): This is the total number of clicks

that will be generated by keyword k at time t in the

simulation. In real web traffic data, we find that most

clicks occur around midday excepting the lunch

break. Least traffic occurs around 3am. Figure 5

shows this function modeled as a sine wave.

Obviously international websites may have a

different profile.

ClickProb (k,t,p): This is the proportion of the

traffic that will be absorbed by a particular position.

For instance, if we are in position 1, we may collect

50% of the clicks. If we are in position 3, we may

collect 10%. Empirically this distribution tends to

follow an exponential distribution, although figure 5

depicts a linear function.

ConversionProb(k,t,p): This is the probability of a

customer who has visited the simulated site, of

converting to a paid customer. There is a lore in the

search engine community that customers who click

pprrooffiitt

cclliicckkss

ccoonnvveerrssiioonnss
bbiidd

Planned bids

lower down in search results will be more likely to

convert, since someone in position 100 of a list is

assumed to be studiously looking for a service. If this

were true, ConversionProb would be properly

modeled as a function of position. Although our

experimental evidence to-date has not supported this

hypothesis, we can test the impact of such an

eventuality in the simulator.

ConversionValue(k,t,p): The revenue a customer

generates once they click through onto the site.

DatabaseAgent(c,k,t,p): We can define any

number of robot Database Agents. These are each

tiny Visual C# programs which define behavior for

various agents. For example, figure 6 depicts an

agent which repeatedly bids one cent above your bid.

<ClickTotal>

return (int)(5 +

40*(1+Math.Sin((CurrentTime.TimeOfDay.Hours/23

.0)*2*Math.PI)));

</ClickTotal>

<ClickProbability>

 if(Position == 0) return 1.0;

 else return ((7.0-Position) / 6.0);

</ClickProbability>

<ConversionProbability>

return 0.5;

</ConversionProbability>

<ConversionValue>

return 4.0;

</ConversionValue>

<BidAgent listingId="1">

<BidFunction>

 if (MarketBids == null) { return A; }

 Random random = new Random();

 if (PreviousBid LessThan F) { return F; }

 if (random.NextDouble() LessThan C) {

return (PreviousBid + (random.NextDouble() * D

– D/2.0)); } else { return PreviousBid; }

</BidFunction>

</BidAgent>

Figure 5. Random Bidding Simulation

5.1 Random bidding

The first simulator experiment we describe

involves agents that shift their bids randomly. Our

agent’s initial price is A. Every 10 minutes, an agent

with probability C, increments its price according to a

uniform random distribution between –D/2 and D/2.

If an agent’s bid drops below a floor F, the agent’s

price resets to F. This same bounded random walk

was used to model airline prices in the 2001 Trading

Agent Competition [7]. Although simplistic, this

provides a useful benchmark with which to

understand the capabilities and deficiencies of the

agent. The program for this bidding behavior is

shown in figure 5.

<BidAgent listingId="1">

<BidFunction>

if(PreviousBids == null) return 0.01;

return PreviousBids[1] + 0.01;

</BidFunction>

</BidAgent>

Figure 6. Anti-social competitor

We now describe several experiments using our

Random Bidding simulation. In figures 7 to 11, our

agent is agent 1000001. In figure 12 and 13 our agent

is agent 1. Finally, each figure uses three sub-

windows. The top window is profit by time. The

middle is bid by time, and the bottom is clicks by

time. We denote the letters A, B, C on these graphs to

draw attention to events of interest.

5.1.1 Optimize profit

In this scenario the agent has an objective of

maximizing profit and is not subject to any

constraints. In Figure 7 top window (point A), agent

100001’s profit tends to be higher than that of any

other agent. Agent 100001 tends to maintain a bid

between $0.25 and $1.00, which is the optimum.

Figure 8 shows the same simulation on a different

simulation run. Again note that agent 100001 has a

profit higher than the other agents. About two-thirds

of the way through the simulation (Figure 8, point A),

agents 2, 5 and 6 all dramatically increase their bids.

Profit for these agents plummets, with agent 6 clearly

showing negative profit (point B). However agent

100001 does not follow suit and continues to

generate good profit.

5.1.2 Maintain position under a maximum bid

In this experiment we wanted to see how the agent

would fulfill competing constraints. The agent is

instructed to maintain position of 2 with maximum

bid < $1.50.

Refer to figure 9. At point B, the agent is in

position 2 and following the bid as it goes higher. At

$1.50 the agent can no longer afford position 2. At

that point the agent drops down to position 3.

Position 3 becomes too high at point C, and the agent

drops further into position 4. The agent remains in

position 4 for the remainder of the simulation.

5.1.3 Surf the gap

A “gap” in a PPC auction exists when there is a

group of competitors who are d cents away from each

other, followed by a steep rise D>>d to another group

of competitors. Say the auction has prices for

positions 4 to 1 are $1.41, $1.42, $1.43, $3.09. A

person who bids $1.44 would place themselves into

position 2 for almost the same price as the person in

position 4 ($1.41). The region $1.44 to $3.09 is

known as a “gap”. Heuristically it can be a fairly

effective strategy to have your agent look for these

gaps and situate itself in them.

We tested the performance of “gap surfing” by

instructing the agent to situate itself in the largest gap

greater than $0.20. In figure 10 the largest gap is

initially in position 2 (point A), but later the auction

changes and it is in position 4 (point B). Surprisingly,

using this simple rule, the agent generates more profit

than any of the other agents.

At the time of writing, at least five commercial

products offer “gap surfing” rules, so this result is

certainly interesting. One would expect that picking

the right parameters for the gap-size, however, would

be difficult without formal analysis.

5.1.4 Optimize traffic

In this scenario the agent has the task of

maximizing traffic generated in each period. The

agent is allowed an unlimited budget. Figure 11

middle (point A) shows that the agent picks the

highest bid. The bottom figure shows that traffic is

higher than any other agent. Interestingly, if we look

at the top frame showing profit, the agent can be seen

to be running at a considerable loss (eg. see point B)

– a natural consequence of this kind of objective!

5.2 Save for a Rainy Day

In this next simulation we test the value of being

able to predict and plan for the future. The XML for

this simulation is provided in figure 14.

We construct a simulation in which competitors

vary their bids in a periodic fashion throughout the

day. This is not completely unrealistic – many PPC

bid management programs allow users to specify

timed bids, and we know of companies who bid low

at night and high during the day. We model this with

competitors who bid according to a sine wave.

We also model traffic as a sine wave. However,

here’s the catch. The price and traffic sine waves are

out of phase. Thus, the market is cheap when traffic

is high. This means that it is most profitable to bid

high when the market is cheap.

We begin the simulation with an infinite budget,

and around 24 hours into the simulation, we lower

the budget available to the agent. At this point, the

agent must decide how to allocate a very small

budget. The optimal solution would be to allocate it

during the cheap part of the day – which is 12 hours

in the future; meaning that the agent should hold back

on spending and wait for the cheaper period, before

spending judiciously so as to get the maximum profit

with its meager funds.

<ClickTotal>

 return (int)(30 + 30*(1+Math.Sin((

((CurrentTime.TimeOfDay.Hours+12) % 23)

/23.0)*2*Math.PI)));

</ClickTotal>

<ClickProbability>

if(Position == 0) return 1.0;

else return ((7.0-Position) / 6.0);

</ClickProbability>

<ConversionProbability>

return 0.5;

</ConversionProbability>

<ConversionValue>

return 4.0;

</ConversionValue>

<BidAgent listingId="-1"><BidFunction>

return (0.01 +

0.5*(1+Math.Sin((CurrentTime.TimeOfDay.Hours/2

3.0)*2*Math.PI)));

</BidFunction></BidAgent>

Figure 14. Save for a Rainy day simulation. Five

competitor agents similar to -1 shown above are

defined.

Figure 12 and 13 show the simulation. Our agent is

agent 1. Over the first day, as market sinks, the

agent’s own bid price decreases and it takes a higher

position (figure 12D). On day 2 we drop its budget to

$10,000 per day (figure 12B and figure 13A). In

response, the agent immediately shuts down its

bidding (figure 13B). The agent still has a budget but

is refusing to spend – in fact, the agent is predicting

the periodic cheapening of the market in the next 12

hours. When the market becomes cheap, the agent

resumes spending (figure 13C), and shuts down once

more after the prices begin to increase. This is an

excellent example of the ability of the agent to plan

ahead via its future allocation plan.

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802

x 10
4

0

1

2

3

4
x 10

5 profit kw 1

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802

x 10
4

0

0.5

1

1.5

unitbid kw 1

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802

x 10
4

0

1

2

3

4
x 10

5 noclicks kw 1

datefloat

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 1000001

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 1000001

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 1000001

Figure 7. Profit optimization

3.7801 3.7801 3.7802 3.7803 3.7803 3.7803 3.7804

x 10
4

-10

-5

0

5
x 10

5 profit kw 1

3.7801 3.7801 3.7802 3.7803 3.7803 3.7803 3.7804

x 10
4

0

2

4

6

unitbid kw 1

3.7801 3.7801 3.7802 3.7803 3.7803 3.7803 3.7804

x 10
4

0

1

2

3

4
x 10

5 noclicks kw 1

datefloat

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

Figure 8. Profit optimization x2

3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802 3.7803 3.7803 3.7803

x 10
4

-2

0

2

4

6
x 10

5 profit kw 1

3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802 3.7803 3.7803 3.7803

x 10
4

0

0.5

1

1.5

2

2.5

unitbid kw 1

3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802 3.7803 3.7803 3.7803

x 10
4

0

1

2

3

4
x 10

5 noclicks kw 1

datefloat

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

Figure 9. Hold position 2 and Bid<$1.50

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802

x 10
4

-1

0

1

2

3

4
x 10

5 profit kw 1

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802

x 10
4

0

0.5

1

1.5

2

2.5

unitbid kw 1

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802

x 10
4

0

1

2

3

4
x 10

5 noclicks kw 1

datefloat

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 1000001

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 1000001

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

agent 1000001

Figure 10. “Surf the gap”

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802

x 10
4

-2

-1

0

1

2

3
x 10

5 profit kw 1

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802

x 10
4

0

1

2

3

unitbid kw 1

3.7801 3.7801 3.7801 3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802

x 10
4

0

1

2

3
x 10

5 noclicks kw 1

datefloat

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

Figure 11. Maximize traffic

Figure 12. Adjust for periodic markets

A B

C

A

B

A

A

B

A

A D B

Figure 13. Plan for spending later in the day

Construction of the auction simulator has provided

an invaluable tool with which to test our agent. We

were also able to better understand the limitations of

our system. For example, it is theoretically possible

to design a competitor that always bids over our price

– thereby forcing us into a less profitable position.

Such an “anti-social” agent [1] can assume its

position in the simulator faster than we can change

our position, and consequently it can be persistent

problem. In reality, we have found that our agent

changes much faster than other participants (who are

presumably mostly managing auctions manually), but

the possibility is thought-provoking. We have also

considered the possibility of building internal models

of competitor behaviors as nearly all competitors in

PPC auctions employ fixed rules that could be

inferred after some probes; and then planning around

these responses.

6. References

[1] Brandt, F. and Weiss, G., “Antisocial Agents and

Vickrey Auctions”, Proceedings of the Eighth

International Workshop on Agent Theories,

Architectures, Seattle. 2001.

[2] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E.,

“Extensible Markup Language (XML) 1.0”, W3C

Recommendation 6, October 2000.

http://www.w3.org/TR/REC-xml.

[3] Fielding, R., Gettys, J., et. al., “Hypertext Transfer

Protocol -- HTTP/1.1”, Network Working Group RFC

2616, 1999. http://www.w3.org/Protocols/

[4] Kaebling, L., Learning in Embedded Systems, MIT

Press, Cambridge, MA. 1993.

[5] Kitts, B. and LeBlanc, B., “Optimal Bidding on

Keyword Auctions”, Electronic Markets, Vol. 14, No.

3. in press.

[6] Trowbridge, D., Hohpe, G., et al., Enterprise Solution

Patterns Using Microsoft .NET, Microsoft Press,

2003.

[7] Wellman, M., Greenwald, A., Stone, P. and Wurman,

P., “The 2001 Trading Agent Competition”,

Electronic Markets, Vol. 13, No. 1. 2003.

[8] NET Framework Developer’s Guide, Microsoft

Developer Network Web Page,

http://msdn.microsoft.com/library/default.asp?url=/libr

ary/en-us/cpguide/html/cpconoverviewofadonet.asp

[9] Trading Agent Competition, Detailed Rules,

http://www.sics.se/tac/page.php?id=3&PHPSESSID=

600dc3960f72e1b8a7b632dfc6b4d933

[10] Technology Information for the .NET Framework 1.1,

Microsoft Corporation,

http://msdn.microsoft.com/netframework/technologyin

fo/

A B C

http://www.w3.org/TR/REC-xml
http://www.w3.org/Protocols/
http://ai.eecs.umich.edu/people/wellman/pubs/tac01.html
http://www.electronicmarkets.org/
http://www.sics.se/tac/page.php?id=3&PHPSESSID=600dc3960f72e1b8a7b632dfc6b4d933
http://www.sics.se/tac/page.php?id=3&PHPSESSID=600dc3960f72e1b8a7b632dfc6b4d933

