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Abstract 
 

We describe the lessons learned in deploying an 

intelligent trading agent for electronic Pay-Per-Click 

keyword auctions. Our discussion focuses upon the 

technical challenges in developing the bid 

management framework – an extensive internet 

communications infrastructure and database used to 

query market quotes, store data, and submit bids. In 

addition to the production system, we have also built 

an auction simulator for demonstration and testing 

purposes. The simulator allows the specification of a 

population of competitor bidding agents as tiny C# 

programs, which are dynamically compiled at run-

time and run in the simulation. Through this 

simulator we present scenarios which demonstrate 

both the richness of our trading agent, and also some 

interesting scenarios in electronic auctions.  

 

1. Introduction 
 

A Pay per click (PPC) search auction is an auction 

for sponsored positions in search engines. For 

instance, if a user types in a search for “masters 

degree” at Google, they will get back a set of listings. 

These include sponsored sites which have paid on a 

PPC auction to have their companies shown. 

PPC auctions run every minute of the day for 

every possible character sequence. In each auction, a 

competitor p enters a bid bk
(p)

 which is the amount 

they are willing to pay should a customer click on 

their advertisement in the search results for keyword 

k. The auctioneer (eg. Google) sorts the bids for 

keyword/auction k and awards position 1 to the 

highest bid, position 2 to the second highest bid, and 

so on. The participant will then pay an amount equal 

to the number of customers who visit their web-site 

multiplied by their bid price.  

This paper will discuss the lessons learned in 

developing a successful trading agent for PPC 

auctions. The agent is fully deployed and managing 

funds for nearly four thousand auctions. We relate 

experiences that may be relevant to other trading 

agent/auction projects. We also illustrate our system 

using a simulator which we have developed for 

demonstration and testing. Using the simulator we 

construct scenarios which show the performance of 

different trading strategies.  

 

2. Agent 
 

The iProspect bidding agent is responsible for 

choosing prices on a portfolio of PPC auctions, at 

every hour during the day, such that an objective is 

maximized, its budget is not exceeded, and other 

user-defined price and cost constraints are achieved.  

The agent can optimize profit, revenue, traffic or 

acquisitions. The agent maximizes its objective by 

predicting market demand and price over T future 

hours, and for every conceivable position on each 

auction using parameterized functions. After doing 

this, the agent finds a vector of bids that optimize its 

objective. Bids for the next T hours are computed, but 

only the bids for the current hour are submitted to the 

auction. The extra work of budgeting for the next T 

hours forces the agent to plan ahead. The 

optimization problem is solved using steepest ascent. 

The optimization algorithm is supplemented by a 

variety of user definable rules. Many of the rules 

function as mathematical constraints for the 

optimizer. For instance, a bid-max rule forms an 

upper bound on the price of a keyword. The budget 

forms another constraint. A more complete 

description of the bidding algorithm can be found in 

[5]. 

The system presently manages 3,771 auctions and 

a considerable amount of money. Bids may be 

changed as fast as once per hour. The system 

automatically adjusts its bidding for budget under-

shoots or over-shoots, time-of-day, competitor 

activity, and so on. The system also automatically 

explores the auction using an interval estimation-like 

procedure [4]. The system reports on its performance 

via a webpage with various monitoring graphs.  

 

3. Bid Management Framework 
 

In order to bid effectively, the agent needs to (a) 

read the auction market state, (b) record conversion 

events, (c) record data in a common database schema, 
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(d) execute the agent and (e) submit new bids to the 

auction. All tasks except for (d) fall under the rubric 

of the Bid Management Framework (BMF). The 

technical challenges for the BMF were just as 

numerous as those of the agent, and many of the 

lessons learned should translate readily to other 

trading agent systems. 

The BMF operates on a Microsoft Windows 

platform. SQLServer was used as the database. All 

framework components were written in C# and rely 

on the functionality supplied by Microsoft’s .NET 

Framework. The .NET framework provided extensive 

libraries for XML Serialization, Threading, and 

Remoting in addition to a level of standardization and 

comprehensiveness not found in Open Source 

solutions. The MatLab programming language 

(Mathworks) is used for the agent optimization 

routines. These implementation decisions greatly 

eased the development of each component. 

The BMF can be divided into four parts: (1) 

Database, (2) Communications layer, (3) Task 

scheduler and (4) Conversion tracking system. We 

describe each part in the following section. 

 

3.1 Database 
 

We maintain separate database schemas for each 

auction in order to collect auction-specific data. For 

instance, Google provides a bid-position estimation 

utility that other auctions don’t provide. We also 

maintain a single standard schema that provides a 

standardized view of all of the auctions. This 

standard schema allows components in the BMF and 

agent to simplify their logic. 

Database access is achieved through a series of 

data abstraction layers. The first layer defines a series 

of stored procedures found within the database 

model. The second layer of abstraction comprises a 

series of Data Access Classes (DAC) modeled on the 

Data Transfer Object standard of [6]. DAC classes 

are built on top of Microsoft’s ADO.NET data access 

library. 

 

3.2 Auction Communications 
 

The BMF communicates with each auction 

through an auction-specific Auction Service Gateway 

(ASG). Each ASG is designed to encapsulate all 

communication logic required by the auction and to 

provide a simple mechanism for submitting requests 

to the auction for all dependant components. Three 

auctions are presently supported: 

Overture: The ASG communicates with 

Overture’s DirecTraffic Center® (DTC) via an XML 

communication protocol [2]. This protocol defines a 

set of command and response messages capable of 

handling multiple requests at a time. Each set of 

XML messages are passed back and forth over a 

HTTPS connection. Overture’s DTC interface also 

defines a set of restrictions and access fees based on 

command count and frequency. The scheduler keeps 

track of its access count and frequency to comply 

with these restrictions. 

Google: The ASG communicates with Google 

Adwords™ using the HTTP protocol [3]. To 

accommodate this type of interface, a set of classes 

were developed which encapsulated the navigation 

and parsing logic needed to submit requests for 

reports from Google. Google has an access restriction 

of 3 to 6 seconds per request, and the ASG complies 

with these restrictions. 

Simulated: The simulator is an external program 

which runs independently and inserts market data 

directly into the database allowing the agent to 

function as if it were participating in a live auction. 

 

3.3 Task Scheduler 
 

The task scheduler is responsible for scheduling 

the execution of both agent launch and database 

synchronization tasks. Scheduling information is 

stored in the database and monitored every few 

minutes. Once it is determined that a task is ready for 

execution, the task is marked as executing and a work 

request is placed in the appropriate work queue. 

Agent Launch Service: The agent launch service is 

responsible for executing MatLab script by means of 

a command line shell. Communication with this 

service is accomplished through a closely monitored 

work queue. 

Database Synchronization Service: The database 

synchronization service (DSS) is responsible for 

synchronizing a BMF database and its remote auction 

counterpart. The DSS implements two tasks: capture 

of market-state and bid updates. Market state capture 

involves gathering all data available about a keyword 

including clicks, impressions, and time of quote. A 

bid update involves submitting new bids for 

keywords. Communication with this service is 

accomplished through a work queue. 



 

3.4 Conversion Tracking 
 

The Conversion Tracking System provides a 

means for capturing conversion events in real-time. 

The Conversion Tracking System records two types 

of events. When the customer first clicks on the PPC 

listing, the customer is re-directed to a Conversion 

Tracking Server which records the click, time, and 

PPC listing, creates a cookie to identify the customer 

session, and then sends the customer on to their 

destination. Secondly, on conversion pages a special 

Image tag sends a request to our Conversion tracking 

server along with a query parameter that specifies the 

revenue value of the conversion that has just 

transpired. When our server receives this request it 

knows that a conversion has occurred. Every fifteen 

minutes, Conversion Tracking System data is 

downloaded into our database, and from there 

merged with other information that we have recorded 

about the auction. This allows the agent to witness 

changing market conditions and respond to consumer 

behavior in near real-time. 

 

4. Deployment Lessons 
 

We learned a number of lessons that may be 

generalizable to other trading agent implementations. 

 

4.1 Rules 
 

One of our earliest discoveries was the value of 

rules as a way of constraining the optimization. The 

potential for mischief in PPC auctions is staggering. 

A single keyword put into the wrong position can 

generate thousands of dollars in cost in just hours. 

We have therefore developed safeguards to support 

our automated bidding solution.  

 

Constraints: Pricing rules were developed hold 

prices to within a definable percentage of historical 

prices. This was important for reproducing past 

performance on an account that we were asked to 

take over, before gradually improving performance. 

As we monitored the account and verified that 

optimizer’s actions were having the desired effect, 

the constraints were able to be relaxed, allowing the 

prices to move closer to their optimum settings 

(figure 1). 
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Figure 1. Account with prices constrained to within 

10% of historical median, 60% of historical median.   

 

Strategic auctions: Strategic auctions are 

keywords that carry much of the profit or traffic to a 

client. Strategic auctions exist in all client accounts 

because revenue share per auction generally follows a 

Zipf-like distribution (figure 2) – most of the revenue 

is generated by a select few auctions. These auctions 

are problematic because if conditions change this can 

seriously affect a customer’s viability. Thus, like 

securities trading, the secret to success is having a 

diverse portfolio; an account with many moderate 

performing auctions is better than an account with 

one or two star performers. 

In order to protect strategic auctions, we first 

found and then put special rules in place for these 

auctions. After this we monitored them as “bell-

weathers” to verify that these auctions were being 

managed properly.  
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Figure 2. FOv10 is more vulnerable than FOv9, 

because the former contains a strategic auction that is 

responsible for 30% of the account’s revenue. The 

arrival of a competitor on this auction could seriously 

affect FOv10’s profitability. 

 

4.2 Monitoring Systems 
 

Failure logging, email notification, and auction 

monitoring graphs were also important. Logs were 

invaluable for identifying conditions that were 

causing problems during our early testing. An auction 

monitor system was created which collected several 

dozen graphs on various aspects of the bidding, 

including forecasts (eg. figure 3). These were 



published to a webpage, so that each client account 

could be monitored in real-time.  

 

 
Figure 3. One of our monitoring graphs showing 

average price of bids submitted in the past and 

planned in the future. The arrow shows the start of 

the bid plan. This client suspends bidding during 

night-time and on weekends, and these shut-downs 

can be seen in the forecast. 

 

4.3 Constraints aren’t really fixed 
 

When formulated as a numerical optimization 

problem, the budget is traditionally thought of as a 

quantity that is magically provided by the customer. 

However, in reality, we discovered that the budget 

was really an unknown for even our customers, and 

they were interested in suggestions for what amount 

might give them the best returns. Because the agent 

had extensive models for every keyword auction, we 

found that we could provide this kind of insight. The 

what-if analysis can be performed by running under 

hypothetical budgets, keyword-rules, or positions, 

and observing the predicted impact on acquisitions, 

clicks, position, and revenue under each condition, 

based on the optimizer’s best bid allocation under 

these constraints. An example what-if analysis is 

shown in figure 4. This kind of analysis provided 

clients with a deep understanding into the efficiency 

of their programs. For instance, PPC auctions often 

show diminishing returns as spending increases. 

Using the what-if analysis, we found that we could 

cut the spending of many clients in half and generate 

almost as many acquisitions.  
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Figure 4. What-if analysis for ten potential budgets.  

Above a budget of $130 profit begins to decline as 

positions are captured which are too expensive to 

justify their cost. All metrics are the same scale, with 

the value at budget of $20 equal to 1.0.  

  

5. Multi-agent Simulator 
 

The simulator module is a Visual C# system that 

allows the production system to be taken off-line and 

tested in a safe environment. The simulator module 

reads and writes to the same database tables that are 

used in production. This allows the switch from 

production to test environment to be seamless from 

the perspective of the agent.  

A simulator file defines the parameters of the 

simulation. The simulator file is written using the 

XML standard format [2] and defines a number of 

functions. These include: 

Duration: The length of time for which the 

simulator will be running. 

ClickTotal(k,t): This is the total number of clicks 

that will be generated by keyword k at time t in the 

simulation. In real web traffic data, we find that most 

clicks occur around midday excepting the lunch 

break. Least traffic occurs around 3am. Figure 5 

shows this function modeled as a sine wave. 

Obviously international websites may have a 

different profile. 

ClickProb (k,t,p): This is the proportion of the 

traffic that will be absorbed by a particular position. 

For instance, if we are in position 1, we may collect 

50% of the clicks. If we are in position 3, we may 

collect 10%. Empirically this distribution tends to 

follow an exponential distribution, although figure 5 

depicts a linear function. 

ConversionProb(k,t,p): This is the probability of a 

customer who has visited the simulated site, of 

converting to a paid customer. There is a lore in the 

search engine community that customers who click 

pprrooffiitt  

cclliicckkss  

ccoonnvveerrssiioonnss  
bbiidd  

Planned bids 



lower down in search results will be more likely to 

convert, since someone in position 100 of a list is 

assumed to be studiously looking for a service. If this 

were true, ConversionProb would be properly 

modeled as a function of position. Although our 

experimental evidence to-date has not supported this 

hypothesis, we can test the impact of such an 

eventuality in the simulator. 

ConversionValue(k,t,p): The revenue a customer 

generates once they click through onto the site.  

DatabaseAgent(c,k,t,p): We can  define any 

number of robot Database Agents. These are each 

tiny Visual C# programs which define behavior for 

various agents. For example, figure 6 depicts an 

agent which repeatedly bids one cent above your bid.  

 

<ClickTotal> 

return (int)(5 + 

40*(1+Math.Sin((CurrentTime.TimeOfDay.Hours/23

.0)*2*Math.PI)) ); 

</ClickTotal> 

<ClickProbability> 

 if(Position == 0) return 1.0; 

 else return ( (7.0-Position) / 6.0); 

</ClickProbability> 

<ConversionProbability> 

return 0.5; 

</ConversionProbability> 

<ConversionValue> 

return 4.0; 

</ConversionValue> 

<BidAgent listingId="1"> 

<BidFunction> 

   if (MarketBids == null) { return A; } 

   Random random = new Random();  

   if (PreviousBid LessThan F) { return F; } 

  if (random.NextDouble() LessThan C) {  

return (PreviousBid + ( random.NextDouble() * D 

– D/2.0)); } else { return PreviousBid; } 

</BidFunction> 

</BidAgent> 

 

Figure 5. Random Bidding Simulation 

 

5.1 Random bidding 
 

The first simulator experiment we describe 

involves agents that shift their bids randomly. Our 

agent’s initial price is A. Every 10 minutes, an agent 

with probability C, increments its price according to a 

uniform random distribution between –D/2 and D/2. 

If an agent’s bid drops below a floor F, the agent’s 

price resets to F.  This same bounded random walk 

was used to model airline prices in the 2001 Trading 

Agent Competition [7]. Although simplistic, this 

provides a useful benchmark with which to 

understand the capabilities and deficiencies of the 

agent. The program for this bidding behavior is 

shown in figure 5. 

 

<BidAgent listingId="1"> 

<BidFunction> 

if(PreviousBids == null) return 0.01; 

return PreviousBids[1] + 0.01; 

</BidFunction> 

</BidAgent> 

 

Figure 6. Anti-social competitor 

 

We now describe several experiments using our 

Random Bidding simulation. In figures 7 to 11, our 

agent is agent 1000001. In figure 12 and 13 our agent 

is agent 1. Finally, each figure uses three sub-

windows. The top window is profit by time. The 

middle is bid by time, and the bottom is clicks by 

time. We denote the letters A, B, C on these graphs to 

draw attention to events of interest. 

 

5.1.1 Optimize profit 

 

In this scenario the agent has an objective of 

maximizing profit and is not subject to any 

constraints. In Figure 7 top window (point A), agent 

100001’s profit tends to be higher than that of any 

other agent. Agent 100001 tends to maintain a bid 

between $0.25 and $1.00, which is the optimum.  

Figure 8 shows the same simulation on a different 

simulation run. Again note that agent 100001 has a 

profit higher than the other agents. About two-thirds 

of the way through the simulation (Figure 8, point A), 

agents 2, 5 and 6 all dramatically increase their bids. 

Profit for these agents plummets, with agent 6 clearly 

showing negative profit (point B). However agent 

100001 does not follow suit and continues to 

generate good profit. 

 

5.1.2 Maintain position under a maximum bid 

 

In this experiment we wanted to see how the agent 

would fulfill competing constraints. The agent is 

instructed to maintain position of 2 with maximum 

bid < $1.50.  

Refer to figure 9. At point B, the agent is in 

position 2 and following the bid as it goes higher. At 

$1.50 the agent can no longer afford position 2. At 

that point the agent drops down to position 3. 



Position 3 becomes too high at point C, and the agent 

drops further into position 4.  The agent remains in 

position 4 for the remainder of the simulation. 

  

5.1.3 Surf the gap 

 

A “gap” in a PPC auction exists when there is a 

group of competitors who are d cents away from each 

other, followed by a steep rise D>>d to another group 

of competitors. Say the auction has prices for 

positions 4 to 1 are $1.41, $1.42, $1.43, $3.09. A 

person who bids $1.44 would place themselves into 

position 2 for almost the same price as the person in 

position 4 ($1.41). The region $1.44 to $3.09 is 

known as a “gap”. Heuristically it can be a fairly 

effective strategy to have your agent look for these 

gaps and situate itself in them.  

We tested the performance of “gap surfing” by 

instructing the agent to situate itself in the largest gap 

greater than $0.20. In figure 10 the largest gap is 

initially in position 2 (point A), but later the auction 

changes and it is in position 4 (point B). Surprisingly, 

using this simple rule, the agent generates more profit 

than any of the other agents.  

At the time of writing, at least five commercial 

products offer “gap surfing” rules, so this result is 

certainly interesting. One would expect that picking 

the right parameters for the gap-size, however, would 

be difficult without formal analysis. 

 

5.1.4 Optimize traffic 

 

In this scenario the agent has the task of 

maximizing traffic generated in each period. The 

agent is allowed an unlimited budget. Figure 11 

middle (point A) shows that the agent picks the 

highest bid. The bottom figure shows that traffic is 

higher than any other agent. Interestingly, if we look 

at the top frame showing profit, the agent can be seen 

to be running at a considerable loss (eg. see point B) 

– a natural consequence of this kind of objective! 

 

5.2 Save for a Rainy Day 
 

In this next simulation we test the value of being 

able to predict and plan for the future. The XML for 

this simulation is provided in figure 14. 

We construct a simulation in which competitors 

vary their bids in a periodic fashion throughout the 

day. This is not completely unrealistic – many PPC 

bid management programs allow users to specify 

timed bids, and we know of companies who bid low 

at night and high during the day. We model this with 

competitors who bid according to a sine wave. 

We also model traffic as a sine wave. However, 

here’s the catch. The price and traffic sine waves are 

out of phase. Thus, the market is cheap when traffic 

is high. This means that it is most profitable to bid 

high when the market is cheap. 

We begin the simulation with an infinite budget, 

and around 24 hours into the simulation, we lower 

the budget available to the agent. At this point, the 

agent must decide how to allocate a very small 

budget. The optimal solution would be to allocate it 

during the cheap part of the day – which is 12 hours 

in the future; meaning that the agent should hold back 

on spending and wait for the cheaper period, before 

spending judiciously so as to get the maximum profit 

with its meager funds. 

 

<ClickTotal> 

 return (int)(30 + 30*(1+Math.Sin((  

((CurrentTime.TimeOfDay.Hours+12) % 23)  

/23.0)*2*Math.PI)) );       

</ClickTotal> 

<ClickProbability> 

if(Position == 0) return 1.0; 

else return ( (7.0-Position) / 6.0); 

</ClickProbability> 

<ConversionProbability> 

return 0.5; 

</ConversionProbability> 

<ConversionValue> 

return 4.0; 

</ConversionValue> 

<BidAgent listingId="-1"><BidFunction>  

return (0.01 + 

0.5*(1+Math.Sin((CurrentTime.TimeOfDay.Hours/2

3.0)*2*Math.PI)) ); 

</BidFunction></BidAgent> 

 

Figure 14. Save for a Rainy day simulation. Five 

competitor agents similar to -1 shown above are 

defined. 

 

Figure 12 and 13 show the simulation. Our agent is 

agent 1. Over the first day, as market sinks, the 

agent’s own bid price decreases and it takes a higher 

position (figure 12D). On day 2 we drop its budget to 

$10,000 per day (figure 12B and figure 13A). In 

response, the agent immediately shuts down its 

bidding (figure 13B). The agent still has a budget but 

is refusing to spend – in fact, the agent is predicting 

the periodic cheapening of the market in the next 12 

hours. When the market becomes cheap, the agent 



resumes spending (figure 13C), and shuts down once 

more after the prices begin to increase. This is an 

excellent example of the ability of the agent to plan 

ahead via its future allocation plan. 
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Figure 7. Profit optimization 
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Figure 8. Profit optimization x2 

3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802 3.7803 3.7803 3.7803

x 10
4

-2

0

2

4

6
x 10

5 profit kw  1

3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802 3.7803 3.7803 3.7803

x 10
4

0

0.5

1

1.5

2

2.5

unitbid kw  1

3.7801 3.7801 3.7801 3.7802 3.7802 3.7802 3.7802 3.7802 3.7803 3.7803 3.7803

x 10
4

0

1

2

3

4
x 10

5 noclicks kw  1

datefloat

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

agent 2

agent 3

agent 4

agent 5

agent 6

agent 7

agent 1000001

 
Figure 9. Hold position 2 and Bid<$1.50 
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Figure 10. “Surf the gap” 
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Figure 11. Maximize traffic 

 

 
 

Figure 12. Adjust for periodic markets 
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Figure 13. Plan for spending later in the day 

 

Construction of the auction simulator has provided 

an invaluable tool with which to test our agent. We 

were also able to better understand the limitations of 

our system. For example, it is theoretically possible 

to design a competitor that always bids over our price 

– thereby forcing us into a less profitable position. 

Such an “anti-social” agent [1] can assume its 

position in the simulator faster than we can change 

our position, and consequently it can be persistent 

problem. In reality, we have found that our agent 

changes much faster than other participants (who are 

presumably mostly managing auctions manually), but 

the possibility is thought-provoking. We have also 

considered the possibility of building internal models 

of competitor behaviors as nearly all competitors in 

PPC auctions employ fixed rules that could be 

inferred after some probes; and then planning around 

these responses. 
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