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Abstract—Television is the largest advertising category in the 

United States with 70 billion spent by advertisers per year. We 

compare a variety of different targeting algorithms, ranging 

from the traditional age-gender targeting methods employed 

based on Nielsen ratings, to new approaches that attempt to 

target high probability buyers using Set Top Box data. We 

show the performance of these different algorithms on a real 

television campaign, and discuss the advantages and limitations 

of each method. In contrast to other theoretical work, all 

methods presented in this paper are implementable on current 

television delivery systems.  
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I. INTRODUCTION 

ELEVISION is the largest advertising category in the 

United States with around 70 billion per year in 

revenue [14]. Television consumption is also growing – 

hours per capita have continued to increase as reported by 

Nielsen based on their panel – even with the emergence of 

other video platforms such as mobile [27], [28], [29]. 

According to Nielsen, approximately 20 times more hours 

are spent viewing television (TV) as viewing on internet or 

mobile video [27]. The quality of the TV viewing experience 

has if anything gotten far better in recent years with high-

definition television sets and a flowering of innovative 

original programs, and many authors have commented that 

at least for viewers this seems to be a “Golden Age” for 

television viewing [12], [13], [41], [42].   

If there is an area for improvement in television, it is 

around how advertising technology can continue to remain 

relevant and effective. 

Television presents unique challenges for advertising. In 

online advertising it is possible to deliver ads to individual 

persons, via cookies and IP addresses, and to then track the 

behavior of those persons including whether they convert. In 

television, advertisements are embedded in a single high 

definition video stream and broadcast using over-the-air 

terrestrial transmission towers, satellite and cable. 

Advertisers are therefore not delivering ads to individuals, 

but rather to large sets of people referred to as audiences. 

Thus television advertising has more in common with 

Contextual Advertising in which ads need to be targeted to 

the web sites.  

However in addition to being constrained to deliver ads to 

audiences, TV systems also don’t typically allow the 

 
 

advertiser to know if individuals saw the ad and if their 

purchases were related to having seen the ad. 

Because of these limitations, since the 1950s this medium 

has been tracked using a 25,000 person, Nielsen panel with 

diaries. These individuals could report on what they saw on 

TV, and then this could be extrapolated to the United States 

(114,600,000 households). This panel is both expensive to 

maintain and is also small. 

However this situation is changing. In the United States, 

Set Top Boxes are now present in 91.5% of US homes – 

more common than computers. More significantly, since 

2009 Set Top Boxes with return path capabilities have 

proliferated in the United States, comprising 30% of 

households [16]. This means that there are thousands of 

times more households than the Nielsen panel. This has 

begun to open up new possibilities for television targeting 

[4], [16], [27]. 

This paper will present a current survey of methods for 

television ad targeting ranging from traditional media buying 

approaches [8] to new Set Top Box methods [3].  

In contrast to some other papers that discuss theoretical 

methods for TV ad targeting, the present research focuses on 

methods that are deployable today at full scale using current 

US data collection and US TV broadcasting capabilities. Our 

aim is to show the state of the art, and to also help provide a 

framework for understanding the general TV targeting 

problem and approaches for solving it that are available 

today.  

The present paper makes four contributions:  

1. Describes the data format available for television 

targeting. 

2. Formalizes the TV Ad Targeting problem into a well-

defined objective function.  

3. Identifies the variables available for Ad targeting which 

can be used for targeting practical Television campaigns 

using current television systems.  

4. Compares different algorithms on TV data. 

5. Discusses a method for combining the different 

algorithms to get the best effect. 
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II. THE TV AD TARGETING PROBLEM 

A. Media Instance 

A TV Media Instance Mi (also known as a “spot”) is a 

segment of time on television which can be purchased for 

advertising. We will define the Media Instance Mi as an 

element of the Cartesian product of the following:   

 

Mi  S × P × D × H × T × G × POD × POS × L 

 

where S is Station, P is Program, D is Day-Of-Week, H is 

Hour-Of-Day, T is Calendar-Time, G is Geography, POD is 

the Ad-Pod, POS is the Pod-Position, and L is Media-

Length.  

Stations include Broadcast and Cable stations and are 

generally identified by their call-letters such as KIRO and 

CNN. Geography includes National, Direct Market 

Association Areas such as Miami, FL and Cable Zones such 

as Comcast Miami Beach. An Ad Pod is a set of 

advertisements that run contiguously in time during the 

commercial break for a TV program. Pod position is the 

sequential order of the ad within its pod. Media Length is the 

duration of the time segment in seconds – common ad 

lengths include 30, 15 and 60 second spots.  

B. Bids 

Advertisers provide a bid 𝐶𝑃𝐼(𝑀𝑖) for each media 

instance that the advertiser wants to run their ad on. They 

also provide TV stations with a recording of their television 

commercial in electronic form which is called the ad copy. If 

the advertiser’s bid clears, the television station then inserts 

the ad into pod, positions, station, day, hour, date based on 

the advertiser’s instructions. 

C. Objective 

The ad targeting problem for the advertiser to select a set 

of media 𝑀𝑖 to purchase, and bids for that media 𝐶𝑃𝐼(𝑀𝑖), 

such that the expected ad response per dollar is maximized: 

 

𝑀𝑖: max ∑ 𝑅Ω(𝑃, 𝑀𝑖) ∙ 𝐼(𝑀𝑖)𝑖    (1) 

 

subject to ∑ 𝐶𝑃𝐼(𝑀𝑖) ∙ 𝐼(𝑀𝑖)𝑖 ≤ B and  𝑉({𝑀𝑖}) = 𝑡𝑟𝑢𝑒 

 

where 𝑅Ω(𝑃, 𝑀𝑖) is the response 

(conversion/sales/revenue) per impression for media 

instance 𝑀𝑖, given an advertiser’s product P, 𝐼(𝑀𝑖) are the 

impressions for media 𝑀𝑖, B is the television campaign 

budget, V determines if the set of media violates rotation 

rules (such as running an ad more than once per 60 minutes, 

having greater than 5% of budget on any one network or 

day-part, and so on). Rotation rules are defined by television 

ad buyers and we will not focus on them in this paper. 

A greedy strategy for allocating television media is to 

iteratively select media in order of value per dollar  

 

𝑀𝑖: 𝐦𝐚𝐱
𝑅Ω(𝑃,𝑀𝑖)

𝐶𝑃𝐼(𝑀𝑖)
    (2) 

 

subject to the rotation rule constraints 𝑉 until the budget is 

filled. 𝐶𝑃𝐼(𝑀𝑖) and 𝑅Ω(𝑀𝑖) are both estimates using 

historical clearing prices and media observations. Thus our 

problem reduces to maximizing (2) using machine learning 

estimates of the price for which the inventory will be listed, 

and the value the inventory will generate. 

The remainder of this paper will discuss the problem of 

targeting, which amounts to estimating the 𝑅Ω(𝑀𝑖) response 

per impression part of the objective function above. Cost and 

impression estimation has been discussed elsewhere [20], 

[43]. In order to estimate the value of buying media, we will 

define a targeting algorithm using two variables (a) Media 

asset patterns which represent features for estimating a 

future airing 𝑚𝑖, and (b) an ad response 𝑅Ω(𝑃, 𝑚𝑖) measured 

from those features.   

I. MEDIA ASSET PATTERNS 

The first concept we will introduce is what we call a media 

asset pattern. A media asset pattern is a feature set 

representing a particular set of variable value instantiations 

of the media instance. 

Formally, we define 𝑚𝑖,𝑡 ⊆ 𝑀𝑖 to be a subset of 

instantiated features from the media instance 𝑀𝑖. 

For example consider a future media instance: 𝑀𝑖 = 

(CNN, 8pm, “Piers Morgan”, Tuesday, 12/12/2012, Pod1, 

Pos2,  60s). The following Media Asset Patterns could be 

used to predict its performance: Station 𝑚𝑖1 = (CNN) , 

Station-Hour-Pod 𝑚𝑖2 = (CNN, 8pm, Pod1) , Geography-

Station 𝑚𝑖3 = (National-CNN), and so on.  

We will now enumerate several major Media Asset 

Patterns that can be scored for an upcoming Media Instance: 

A. Program 

The distinctive thing about TV are its programs. Different 

programs appeal to different people – for example, viewers 

of TLC’s “I Didn’t Know I Was Pregnant” are different to 

viewers of SYFY’s “Continuum”.  

There are over 450,000 weekpart-daypart-programs 

available to be purchased on TV. Programs are intuitively 

what people tune into, and intuitively should be good 

predictors of ad performance. The most impactful programs 

are those which have high observed impressions / expected 

impressions for their station-timeslot 
𝐼(𝑚𝑃)

𝐼(𝑚𝑆𝐷𝐻)
. Table I shows 

a list of the top programs based on the above ranking in 

2012. “Super Bowl”, “Macy’s Thanksgiving Day Parade”, 

and “The Oscars”, and others are easy to spot on the list. 

One of the most interesting programs to appear is a program 

named “Honey Badgers!”. This program became a cultural 

sensation in 2011. In 2011 a YouTube video was posted on 

this National Geographic WILD Discovery program, but 

with an extremely humorous voice-over commentary by a 

person only identified as “Randall” [44]. The video garnered 

over 69 million views [45]. A lot of people who saw the 

YouTube spoof video might have been curious about the 

original program, which might have sent ratings for the 

otherwise unassuming WILD TV program through the roof. 

 



 

 

 

TABLE I.  IMPRESSIONS OBSERVED OVER EXPECTED 

Station-Program RE 

NFLN - NFL Football 20.49714 

NBC - Super Bowl XLVI 18.06963 

NFLN – Postgame 15.35507 

CBS - Super Bowl XLIV 15.2775 

ESPN - NFL Football 12.66412 

NBCSN - 2012 NHL All-Star Game 10.47042 

SPD - NASCAR Sprint Cup 10.39651 

FOX - Super Bowl XLV 9.862597 

E! - Live from the Red Carpet: The 2012 Grammy Awards 4.467404 

NBC - Macy's Thanksgiving Day Parade 4.434626 

ABC - Oscars Red Carpet Live 4.288276 

BBCA - William & Kate: The First Year 4.135 

ABC - Dancing With the Stars 4.126531 

VH1 - 2010 MTV Video Music Awards 3.863292 

ABC - CMA Awards 2011 3.831977 

FUSE - Whitney Houston: A Tribute 3.770582 

VH1 - 2011 Video Music Awards 3.423895 

E! - Live from the Red Carpet: The Academy Awards 3.30741 

NBC – Voice 3.305157 

CNN - Arizona Republican Presidential Debate 3.086414 

CNN - New Hampshire GOP Debate 3.009244 

E! - Live from the Red Carpet: Grammys 2.987157 

WILD - Honey Badgers 2.939016 

A. Station-Day-Hour 

Station-Day-Hour (without the program) has an advantage 

of a large number of observations. Programming changes 

every few months, but at the same time, stations often run 

similar programming in the same Station-day-hour timeslots, 

which adds to the value as a predictor. Thus, the increase in 

data and signal need to be traded off against the potential 

error due to changes in programming.  

B. Other 

A variety of other features can also be used to represent 

media including (a) Run Of Station (average performance 

for the entire station), (b) Market-Station-Day-Hour which 

enables local differences to be captured – there are over 200 

* 80,000 = 16 million of these features per ad. (c) Most 

recent Airing: When scoring a program, the most recent 

airing at the same time can be used – for example, rather 

than taking an average over several months, this uses the 

actual buyers per million observed in the last airing. (d) Pod-

Station-Day-Hour: Pod position – the sequence in which the 

ad appears during commercial breaks - also has a large effect 

on performance as audiences exhibit ad avoidance behavior; 

however the first pod tends to retain most of its audience.  

II. AD EFFECTIVENESS 

The second variable that we need to define is an ad 

effectiveness measure 𝑟Ω(𝑃, 𝑚𝑖) where P is the advertiser’s 

product and 𝑚𝑗 is a media asset pattern. This is a measure 

which is positive and monotonic with the lift from 

advertising [39]. Several measures of Ad Effectiveness are 

possible and we will discuss each in more detail in Section 

IV.  

 

 

 

 

 

 

Fig.1. Web spike response per million impressions (WPM) increases with 

the number of buyers per million (BPM) reached by the television ad.  

III. FATIGUE 

If an ad is run in the same program every day, its 

effectiveness should decrease. Meta-studies of hundreds of 

publications have concluded that advertising response shows 

diminishing returns at all levels of frequency greater than 1 

[15], [17], [18], [33], [38]. Jones [18] writing in Journal of 

Advertising Research summarizes these findings as “The 

preponderance of diminishing returns is by now widely 

accepted by the research community, and the facts do not 

need to be discussed further.” Our own campaign data in 

television has verified the same using both set top box 

conversion rate as well as phone response to television 

airings. Indeed we show that the decline increases as a log of 

the number of airings (Fig. 2).  
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Fig.2. Top: and Middle: Person-level conversions per adview for two 

different products – conversion rate declines as a function of the log of 

airings Bottom: Phone calls per million impressions in response to an 

embedded phone number in a TV ad observed after placing an ad in the 

same station-day-hour 1, 2, 3, ..., 20 times. The number of phone calls 

declines as a log of the number of previous airings. 

We’ve shown that frequency has a big effect on response 

per impression. In order account for this we divide our 

measure of ad effectiveness by a function of the log of 

airings. We still need to estimate 𝑟Ω(𝑃, 𝑚𝑖), and we will turn 

to that next. 

𝑅Ω(�̅�, 𝑚𝑖) =
𝑟Ω(𝑃, 𝑚𝑖)

a ∗ ln(𝐴(𝑚𝑖) + 1)
 

IV. TV AD TARGETING ALGORITHMS 

We can now define several classic TV Ad Targeting 

algorithms by describing their choice of media asset pattern 

m and ad effectiveness metric 𝑟Ω(𝑃, 𝑚𝑖). 

A. Target Rating Points (TRPs) on Age-Gender (Nielsen, 

1950):  

Age-gender Target Rating Points are arguably the most 

widely used form of targeting. This form of targeting defines 

a Target Rating Point as the number of persons who match 

the advertiser’s target demographics divided by total 

viewing persons [28]. 

𝑟𝐴(𝑃, 𝑚𝑖) = 100 ⋅
𝜏(𝑚𝑖 , 𝑃)

#𝑄(𝑚𝑖)
 

where Q(Mi) is a set of viewers who are watching TV 

media instance 𝑀𝑖 and where this viewing activity recorded 

by Nielsen panel and qk  Q(Mi). Let # be the cardinality of 

a set, #𝑟𝑇 be persons that match on all demographics.  

For example 50% means that 50% of the people are a 

match to the desired demographics. Age-gender TRPs are 

defined using standard Nielsen Market Breaks – 

gender=male|female, age=18-24, 25-34, 35-44, 45-54, 55-

64, 65+. The target age and gender breaks are defined as the 

highest. 

B. Tellis’ Phone Response Per Impression (Tellis, et. al., 

2005): 

 In cases where a TV ad has been run which included a 

1800 number, it is possible to match the phone responses on 

specific 1800 numbers back to the ad that was placed. We 

can then use this data to unambiguously track sales due to 

the TV ad [11].  

Tellis’ specific method used a series of hour lag terms to 

predict the number of phone-calls that would be generated 

on a given hour [34]. We have implemented a Tellis-like 

method by exposing hour and day-lag terms for historical 

phone response 

𝑟𝐵(𝑃, 𝑚𝑖) =
𝐶𝐴𝐿𝐿(𝑚𝑖)

𝐼(𝑚𝑖)
 

where 𝐶𝐴𝐿𝐿(𝑚𝑖) are the number of calls from media 𝑚𝑖. 

C. Buyer Ratings (Canning, et. al., 2009):  

Buyer targeting looks for media that has a high rate of 

observed buyers per impression, and targets those programs. 

The algorithm isn’t “trained” per se – it simply scores the 

percent of buyers observed in each media and so can be 

thought of as “buyer ratings” [3]. 

𝑟𝐶(𝑃, 𝑚𝑖) =
𝐵(𝑚𝑖)

𝐼(𝑚𝑖)
 

D. Balakrishnan (2012)’s Reach Maximizer:  

Balakrishnan presented a method based on Set Top Box 

data for selecting the maximum reach media plan [2]. We 

can model this counting the number of unique persons 

reached for each media. They used the same program, 

previous N airings to predict the next airing’s reach for the 

program:  

𝑟𝐷(𝑃, 𝑚𝑖) =
U(𝑚𝑖)

𝐼(𝑚𝑖)
 

where U is the number of unique persons who viewed an 

airing on media m.  

E. High Dimensional Demographic Matching (Kitts, et. 

al., 2013):  

This method calculates the demographic match across 

3,000 variables between the ad product buyer and each 

media asset pattern. It is like age-gender matching, but uses 

a thousand times more variables and a match function that 

works in high dimensional vector space [20]. We define the 

demographic match between an ad product and media to be 

as follows:  
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𝑟𝐸(𝑃, 𝑚𝑖) =
�̅�+⋅�̅�𝑖

+

|�̅�+|⋅|�̅�𝑖
+|

  

where �̅� is a vector of demographics representing the 

average buyer demographic readings, and M is a vector of 

demographics for the media placement.   

F. Web Spike Per Impression 

If TV broadcasts are aligned in time and geography with 

web traffic, it is possible to calculate the difference in web 

visits due to each broadcast by comparing web activity a few 

minutes before and after the broadcast. These web spike 

effects are strongest about 13 seconds after the airing. 

Details on calculation of web spike per impression are 

provided in [21]. We can use 

𝑟𝐹(𝑃, 𝑚𝑖) =
Δ𝑊(𝑚𝑖)

𝐼(𝑚𝑖)
 

where Δ𝑊(𝑚𝑖) = 𝑊(𝑚𝑖 , 𝑡1, 𝑔) − 𝑊(𝑚𝑖 , 𝑡2, 𝑔) is the 

difference in web activity at time 𝑡1 vs 𝑡2 and coming from 

same geographic area 𝑔 and where the time and geography 

matches the media asset pattern 𝑚𝑖 and the airings match 

crtieria described in more detail in [21]. 

G. Other Methods 

There are many other methods, but our objective is to 

highlight major classes of approach and to see what we can 

learn about each method. Methods A through E have had 

anecdotal data published on their effectiveness [28], [34], 

[2], [20]. However in no publication to our knowledge, is 

there a comprehensive comparison of all of these techniques 

using a significant volume of live campaign data.  

V. COMPARISON OF TARGETING ALGORITHMS 

In order to measure each method, we used data collected 

from three live TV campaigns. These campaigns comprised 

18,476 TV media instances, run between 1/30/2012 and 

2/17/2013, representing $2.6 million in live advertising 

spend. The TV ads included embedded phone numbers and 

so could use phone response data. These TV ads did not 

include web data feeds, and so the web spike method could 

not be tested.  

The variables tested with this live TV campaign data 

included:  

 

(a) STBHeadMatch: High Dimensional targeting 

(b) Telesales: Tellis’ phone response methods 

(c) Age-Gender: Nielsen Age-Gender TRPs 

(d) Reach: Balakrishnan’s reach maximize 

(e) Sale: Canning et. al.’s Buyer ratings 

(f) US Census: Sales per capita in a geographic area. 

 

The ad targeting algorithms are each a combination of the 

(i) Ad Effectiveness Metric 𝑅Ω and (ii) Media Asset Pattern 

Type 𝑚. For example, STBHeadMatch-Station-Day-Hour 

refers to a High Dimensional Match with Set Top Box data 

using statistics on Station-Day-Hours.  

In order to assess each algorithm, we measured the 

correlation coefficient between each algorithm’s ad 

effectiveness estimate, and the number of buyers per million 

in the program in an upcoming airing. 

We note as a caveat that algorithm performance was 

influenced by the commercials that we used for evaluation. 

We used a product that appeals to an older demographic and 

that tends to watch Daytime television, and as a result many 

station-day-hour features performed quite well. In Prime 

Time the station-program features tend to be more 

predictive. Thus the results shown here can vary with the 

mix of commercials [43].  

The results are shown in Table II. The top performing 

targeting algorithm is STBHead-Station-Day-Hour. The 

method has a correlation with buyers per million of 0.8471 

and is also present 93.9% of the time, so can be used for a 

large number of airings.  

Telesale-Station-Day-Hour-Local has a correlation of 

0.8245 – which is also quite high – but is present only 48% 

of the time.  

The worst performer was sales per capita of the 

geographic broadcast (0.0162).  

In general most of the features below provided some value 

in predicting airings that would have high buyers per 

impression. 

TABLE II.  TV AD TARGETING ALGORITHMS 

TV Ad Targeting Algorithm  R Present 

32-STBHead-Station - Day – Hour 0.8471 0.9391 

40-Telesale-Station - Day - Hour-Local 0.8245 0.4775 

60-STBHead-Station - Program Authority 0.7585 0.2385 

39-Telesale-Station-Local 0.7498 0.7451 

65-AgeGender-SpecialEvent-Station - Program Authority 0.6964 0.0081 

118-Reach-Station - Day – Hour 0.6597 0.2688 

45-Sale-Station - Day – Hour 0.6471 0.8938 

31-STBHead-Station – Rotation 0.6102 0.9391 

59-AgeGender-Station - Program Authority 0.4901 0.2037 

28-STBHead-Program 0.4801 0.5162 

124-Reach-Program Authority 0.4544 0.465 

30-STBHead-Hour of Day 0.4424 1 

27-STBHead-Station 0.3886 0.9391 

55-AgeGender-Program Authority 0.3771 0.5985 

53-AgeGender-Station – Program 0.3262 0.153 

58-Telesale-Station - Day – Hour 0.2793 0.802 

46-Sale-Station 0.26 0.9087 

51-AgeGender-Station - Day – Hour 0.2478 0.8313 

29-STBHead-Day of Week 0.1601 1 

52-AgeGender-Station 0.1099 0.9009 

57-Telesale-Station 0.1079 0.8702 

33-USCensus-DMA 0.0162 0.8073 

 

A. Behavior of TV Ad Targeting Algorithms 

One critical element affecting each algorithm is sparsity. 

Set Top Box buyer data on persons who have bought the 

advertiser’s product, and were also detected watching a 

particular program – will have the greatest problems with 

sparsity. The probability of detection of these customers is 

small. For given media the number of buyers that we can 

expect to observe viewing the media is equal to:    

 

𝐵(𝑚𝑖) = 𝐼(𝑚𝑖) ⋅
𝐴

𝑇𝑉𝐻𝐻
⋅

𝑆

𝑇𝑉𝐻𝐻
 

 

Given S=1 million Set Top Boxes (out of TVHH=114 

million households) and A=10,000 advertiser customers, this 

would mean that only for programs with more than 100,000 

impressions, we could expect 1 buyer to be detected, which 

are very small statistics. The key reason for sparsity is 

because each person must be matched in both STB data and 

Advertiser data. This in turn means that direct Buyer Rating 



 

 

 

counting algorithms are likely to have problems with all but 

the highest TV programs.  

High Dimensional Demographic matching is not as 

impacted by sparsity. It aggregates all STB data into a 

demographic vector and then matches using this vector. 

Let’s take the same A=10,000 advertiser conversions and 

then enrich with 3,000 demographics. We do the same with 

our STB persons (1 million people as before).  

By converting to a demographic vector we have now 

eliminated the need for “cross-domain” person-to-person 

linkage. Rather than 1 person matching in 100,000 

impressions, the entire STB population can now used for 

targeting. This is certainly orders of magnitude more data, 

although the profile may lose information. Which method is 

better? 

We investigated this question by dividing all airings into 5 

quartiles based on impression volume. We then analyzed the 

performance of each metric in predicting future phone 

responses on airings in this impression quartile.  

Figure 3 shows an analysis of the three major classes of 

Ad Effectiveness metric (a) Demographic match, (b) RPI: 

Phone response per impression, and (c) BPI: Buyers per 

impression, versus the size of media being scored. The y-

axis is the correlation coefficient between the predicted 

phone responses and actual phone responses in the future. 

The x-axis is the number of impressions generated by the 

media that is being scored. Each dot is a quartiled set of 

airings, with their correlation coefficient for predicting 

future phone response. A linear fit has been added to each 

set of points to give an idea of the accuracy trend for that ad 

effectiveness metric versus impressions. 

Phone RPI tends to perform very well and is sloped 

upwards. That means that as an airing has more impressions, 

prediction improves. For large airings around 50,000 

impressions in size, the correlation coefficient averages 0.6. 

For programs with fewer than 1,100 impression, RPI 

prediction performance goes to random. 

Demographic matching has a shallower slope. Its 

prediction gets better with more impressions, but it is 

ultimately out-performed on high impression airings by RPI. 

However a key differentiator of the Demographic match 

method is that the shallow slope means that it continues to 

show good prediction performance far down the list of 

airings, into very low impression airings. This is a critical 

advantage for the demographic mach method, and means 

that virtually the entire TV spectrum can be scored and used 

with this method.  

BPI (labeled “abilitec” in Fig. 3) shows the most 

intriguing performance. Because of the high sparsity 

associated with it, this method only begins to be useful on 

airings over 600,000 impressions in size – very large airing 

sizes. However the slope of BPI is quite steep. It is possible 

that BPI might out-pace RPI and ultimately be a more 

predictive variable, with enough Set Top Boxes or the right 

Advertiser that is generating a lot of purchases.  

In terms of usable predictions (scoring airings with 

impressions such that prediction performance is above 0), 

Demographic match covered 99% of all airings. RPI covered 

57%. BPI covered only 0.5% (Figure 4).  

All three methods are needed in practice since were we to 

rely on RPI, for example, half of all airings would not have 

any information. It is also clear that all three methods could 

be combined to produce better prediction performance.  

Demographic matching beats all methods on low impression 

airings (<6,000 impressions). However RPI is effective on 

medium impression sizes. BPI should be incorporated on 

airings with > 600,000 impressions. 

 

 

 

Fig.3. Three classes of ad effectiveness measure, and their performance 

compared to the size of airing. Some points are below the 0 correlation and 

are not shown.   

 

 

 

Fig.4. Number of airings in our TV data that were able to be scored by 

High-Dimensional Demographic match, RPI and BPI (“Abilitecs”).  
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VI. COMBINED ALGORITHM 

A. Combined Algorithm 

Is it possible to use all of the methods that we have 

described above in order to improve performance?  

In order to build a combined algorithm we would need to 

overcome problems introduced by the different metrics and 

range of each algorithm, we need to be able to select features 

that are most predictive, and we need to be able to train the 

algorithm. We’ll describe the procedures we’ve developed 

below.  

B. Model 

The basic idea of the model is to take all of the available 

media asset patterns 𝑚𝑖,𝑡 and Ad Effectiveness measures 

𝑟𝑎(𝑚𝑖,𝑡), and to use them to predict the ad response per 

impression 𝑅Ω(𝑀𝑖). The ad response 𝑅Ω(𝑀𝑖) is a special 

variable and is typically one of the ad effectiveness measures 

that the advertiser decides is the quantity that they want to 

maximize in their objective function. For example, the 

advertiser may want to maximize buyers per impression 

reached or phone responses per impression generated.  

This is fundamentally a supervised learning problem as ad 

effectiveness information is available for some airings, and 

so the system can be trained to predict the quantity based on 

historical examples. 

Our model is a form of Stacked Estimator [37] where each 

ad effectiveness model 𝑟𝛼(𝑚𝑖,𝑡) is an expert, and the 

assembly is trained to predict ad response 𝑅Ω(𝑀𝑖). 

 

𝑅Ω(𝑀𝑖) = 𝑍−1(𝑦, µΩ, 𝜎Ω) 

𝑦 = ∑ 𝑤𝑡𝑥𝑡

𝑡

 

𝑥𝑡 = 𝑍(𝑟𝑡(𝑚𝑡), µ𝑡 , 𝜎𝑡)   
 

The predictors 𝑥𝑡 and ad response target 𝑦 = 𝑍(𝑅Ω, µ, 𝜎) 

are standardized (details below). 

C. Variable Standardization 

We would like to be able to use different ad effectiveness 

variables – ranging from telephone response per impression, 

to buyers per impression and demographic match. However 

each of these variables has a different set of units. In order to 

handle these different scales, we standardize all variables 

using the following transform.  

 

𝑥𝑡 = 𝑍(𝑟𝑡); 𝑦 = 𝑍(𝑅Ω); 𝑍(𝑎) = (𝑎– µ) 𝜎⁄   (1) 

 

When we train the system to predict standardized target  𝑦  

for each ad effectiveness predictor 𝑥𝑡, each predictor is 

effectively measuring the relationship between a change of a 

unit standard deviation in its distribution, to what that 

translates into in terms of standard deviations of movement 

in the target variable (Figure 5). This has several useful 

properties:  

1. No constant term: The constant term is in effect 

removed and the co-variance is measured. The constant term 

is “added back” later when the prediction is converted back 

into target unit. 

2. Interpretability: By standardizing the variables in this 

manner, all variables are on the same scale. When we 

estimate weights, we can then read off the weights in order 

of magnitude and clearly see which variables are 

contributing most to the prediction. 

3. Usability: It also makes it easy for users to enter their 

own weights if they have some domain knowledge. Because 

of standardization (1), w=0.4 intuitively means that 40% of 

the decision should be based on this variable.  

 

 

 

 

 

 

 

Fig.5. Ad effectiveness measures x1 and x2 the target variable y are all 

transformed into standardized 0 mean unit standard deviation coordinates.  

The slope of each standardized predictor indicates how effective the 

standardized predictor is in predicting the target variable.   

D. Constraints due to Ad Theory 

There are certain constraints that we can impose on the 

model due to experimental findings from Advertising 

Theory. Ad theory suggests that as the traits of the ad match 

the product more, response to advertising should increase  

[1], [9], [35], [36]. This leads us to the following 

propositions for ad effectiveness metrics: 

Proposition 1: Ad Effectiveness ∀𝑖: 𝑥𝑖𝑦 > 0: Each ad 

effectiveness metric 𝑥𝑖 is positively correlated with ad 

response 𝑦. 

Proposition 2: Non-negativity for ad effectiveness: Given 

a model predicting ad response   𝑦 = ∑ 𝑤𝑡𝑥𝑡 ∀𝑡: 𝑤𝑡 ≥ 0. 

The effect of improved ad effectiveness is always zero or 

positive on ad response. 

E. Minimum Weight Constraints 

In order to be consistent with Propositions 1 and 2 we 

build a positivity constraint into our weights 

 

𝑤𝑡 ≥ 0  (1) 

 

F. Sum of Weight Constraints 

For reasons of robustness in production, it is important to 

ensure that predictions do not extrapolate higher or lower 

than the range of values that had been observed previously. 

For example, a weight of 2 might lead to the system 

predicting outside of the range of the ad response variable.  

We ensured this by adding a constraint that all weights 

sum to 1. As a result of this additional constraint we also 

have  

 

1 ≥ 𝑤𝑡 ≥ 0 ∧ ∑ 𝑤𝑡
𝑇
𝑡=1 = 1  (2) 

x1 

y x2 



 

 

 

 

A. Low Data Behavior / Variable Participation 

Thresholds 

Each media asset pattern covers a certain number of 

historical airings. For each MAP 𝑚, we sum the number of 

impressions observed 𝐼(𝑚). This gives rise to a problem – 

the ad effectiveness measures may be unreliable on small 

amounts of data.  

Some authors use Bayesian priors to “fill in” performance 

when there is less information available, modifying the ad 

effectiveness score as follows.  

 

𝑟 = 𝑒−𝛼∙𝐼(𝑚) ∙ 𝑟 + (1 − 𝑒−𝛼∙𝐼(𝑚)) ∙ 𝑟𝑃𝑅𝐼𝑂𝑅  
 

where 𝛼 is a parameter which governs how many 

impressions need to be collected for the posterior estimate to 

be favored more heavily than the prior. However priors are 

often incorrect and require creation themselves, and since 

there are hundreds of thousands of variables per product (not 

to mention hundreds of products), this introduces a large 

number of parameters that need to be set. The effect of 

poorly set priors is quite significant as they cause variables 

that may have been good predictors to be spoiled, and the 

training process to be unable to weight them properly. Our 

production system needs to be able to work reliably with 

minimal human intervention. We have found it more reliable 

to train the system using participation thresholds. We define 

a 𝐼𝑀𝐼𝑁 which are the minimum impressions allowed on a 

particular media asset pattern in order for it to be used in 

prediction. If a MAP fails to meet this threshold, it is 

converted to missing value, and so does not participate 

further. The prediction formula elegantly handles missing 

values. 

 

if 𝐼(�̅�𝑖,𝑡) < 𝐼𝑀𝐼𝑁 ∨ 𝜎𝑡 = 0 then 𝑤𝑡 = 0; 𝑥𝑡 = 𝑀𝑉  

 

B. Missing Value Handling 

We may have a situation in which a Media Asset Pattern 

Type may be missing or otherwise unable to report a value. 

For example, the system may not have enough data on the 

Program to be able to provide a prediction. When this 

happens, it is important that the system degrade gracefully. 

The system will need to use a more general Media Asset 

Pattern type – such as the Station to provide a prediction. 

Missing value handling is fairly graceful in that if a 

variable is not available, it is zeroed out and the other 

variables that are present are used to create the prediction. 

For production robustness we also ensure that more 

general – and low missing value - maptypes are defined with 

small weights, so that if there is a failure then the system 

will default to one of these more general maptypes. For 

example, if Station-Day-Hour is undefined, then Station will 

be defined but at a very low weight. It therefore only exerts a 

significant weight when there is a failure on the primary 

features.   

A. Transforming into Target Units 

Ultimately we want to convert our standardized prediction 

into original units. We can do that by inverting the z-score 

transform 

Z−1[𝑦] = 𝑦𝜎𝑗 + µ𝑗  

where j is the ad effectiveness measure that is being 

reported. The Z−1 transform is like performing a 

Programming language cast operation into the appropriate 

units. 

A. Training Algorithm 

Weight training uses the subspace trust-region method 

described by Coleman and Li [6] which is specially designed 

for the 0..1 and sum of weights = 1 constraints below. 

𝑤𝑡 𝐦𝐢𝐧 𝐸 = 𝐦𝐢𝐧 ∑ [(
𝟏

∑ 𝒘𝒕
𝑻
𝒕=𝟏

∑ 𝑤𝑡𝑥𝑡
𝑇
𝑡=1 ) − 𝑦∗]

2

i    

 

1 ≥ 𝑤𝑡 ≥ 0 ∧ ∑ 𝑤𝑡

𝑇

𝑡=1

= 1 

 

If 𝑥𝑡=MV then 𝑤𝑡=0 

 

We use a Forward-Backward selection algorithm to select 

new features to include in the model. 

B. Analysis of model 

We will next review the behavior of the algorithm to help 

set up the algorithm for success.  

 

Theorem 1: Model with one variable 𝑦 = 𝑤𝑖𝑥𝑖  will have 

positive weight 𝑤𝑖 ≥ 0 (from Proposition 1) 

 

From 𝑦 = 𝑤𝑖𝑥𝑖 we can show that  

𝑤𝑖𝑥𝑖𝑦 = 𝑦2; 𝑤𝑖 =
𝑦2

𝑥𝑖𝑦
 

Since 𝑦2 ≥ 0 and 𝑥𝑖𝑦 > 0 from Proposition 1 then 𝑤𝑖 ≥
0. 

 

Theorem 2: Given any model with multiple variables 

= ∑ 𝑤𝑖𝑥𝑖𝑖  , a new variable 𝑥𝑛 will have positive weight if 

Case I, II, or III below is met ∀𝑖. 
Consider any new variable 𝑥𝑛 along with a set of one or 

more variables 𝑥𝑖 The error from the model is defined 

below:  

𝐸(𝑦𝑒𝑠𝑡, 𝑦) = (𝑦𝑒𝑠𝑡 − 𝑦)2 = (∑ 𝑤𝑖𝑥𝑖

𝑖

+ 𝑤𝑛𝑥𝑛 − 𝑦)

2

 

 

𝜕𝐸

𝑑𝑤𝑛

= 2𝑥𝑛 (∑ 𝑤𝑖𝑥𝑖 + 𝑤𝑛𝑥𝑛

𝑖

− 𝑦) 

 

= 2𝑥𝑛(𝑦𝑒𝑠𝑡 − 𝑦) = 2(𝑥𝑛 ⋅ 𝑦𝑒𝑠𝑡 − 𝑥𝑛𝑦) (5) 

 

= 2𝑥𝑛𝑒𝑟𝑟   (6) 

 



 

 

 

We know that 𝑥𝑛𝑦 > 0 from Proposition 1. Therefore 

error will decrease when variable 𝑥𝑛 is added in three cases: 

Case I: If the variable 𝑥𝑛 has higher covariance with the 

dependent than the current assembly 𝑦𝑒𝑠𝑡, ie. 𝑥𝑛𝑦 > 𝑥𝑛 ⋅
𝑦𝑒𝑠𝑡 (from 5) 

Case II: If the new variable is negatively correlated with 

the existing linear combination, ie. 𝑥𝑛 ⋅ 𝑦𝑒𝑠𝑡 < 0, yet is still 

correlated with the dependent 𝑥𝑛𝑦 > 0. (from 5) 

Case III: If the new variable has negative co-variance with 

the existing error – ie. when yest overshoots y, the variable 

is producing a low estimate and vica-versa  𝑥𝑛𝑒𝑟𝑟 < 0 and 

𝑥𝑛𝑦 > 0. (from 6) 

Case III replicates findings by Dietterich that ensemble 

methods should reduce error if the classifiers are correlated 

with the dependent but have uncorrelated errors [10].  

A corollary of Case II is that the learner will be 

susceptible to error from variables that are strongly co-

linear. This pushes the prediction to heavily reinforce the 

errors of the consensus variable. 

However the negative effects of co-linearity are limited. 

Because of the weight constraint (1), the next theorem shows 

that the model has the useful property that the prediction 

error will be no worse than the prediction error from any one 

of the estimators. In other words, co-linear variables will just 

lead to a reinforcement of one of the predictors. This is an 

important property for robustness. 

 

Theorem 3: Error for the model will be less than or equal 

to the error for the worst predictor 𝑥𝑛. 𝐸(𝑓(𝑥1..𝑖 , 𝑥𝑛), 𝑦) ≤
𝐸(𝑓(𝑥𝑛), 𝑦) 

𝑓(𝑥1..𝑖 , 𝑥𝑛) = 𝑤𝑛𝑥𝑛 + ∑ 𝑤𝑖𝑥𝑖

𝑖

 

If (𝑤𝑛𝑥𝑛 − 𝑦)2 ≤ (𝑤𝑛𝑥𝑛 + ∑ 𝑤𝑖𝑥𝑖𝑖 − 𝑦)2 then set 

∀𝑖: 𝑤𝑖 = 0. Therefore we can at least equal the error for 

𝑓(𝑥𝑛), and we may reduce the error further. 

 

C. Discussion 

Theorem 3 suggests that it is important to (1) limit the 

number of variables that are allowed into the ensemble since 

our bound on error is the worst variable we allow into the 

ensemble. Theorem 2 suggests that it is important to (2) 

combine variables that are not co-linear. 

 Colinearity (2) is reduced by using the Stacked Estimator 

framework to train the features. Variable participation (1) is 

limited due to (a) Participation thresholds which remove 

variables, (b) Missing value handling, which enables the 

system to elegantly operate with missing features, and (c) 

forward-backward selection which aggressively removes 

variables that do not make a significant contribution to the 

model. 

VII. EXPERIMENTAL RESULTS 

The above system which we internally call “Scoring 

Service” has been progressively refined and improved from 

2010 to 2014. As of 2014 the system has been used to 

purchase over a quarter of a million premium US television 

spots. The features used by the system have been 

progressively expanded, and in 2014 there are now about 1.2 

million features being used for each advertiser (Figure 6). 

Experimental results on the performance of parts of the 

system in live television campaigns can be found in [20] and 

the system has been involved in advertising industry awards 

[19], [23], [26]. We would also note that not only ad 

response, but also many other variables needed for media 

targeting including Impressions, CPI and other quantities, 

are estimated using the same ensemble media asset pattern 

framework as presented here (each is referred to as a “target 

type”).  

 

 

Fig.6. Features used by the system have grown over time. 

VIII. CONCLUSION 

We have provided a framework for describing TV ad 

targeting algorithms. We note that most algorithms can be 

defined as a choice of media asset pattern and ad 

effectiveness metric. This makes it straight-forward to 

incorporate different representations of television media 

when predicting performance of an upcoming airing. We 

have noted some limitations for some ad targeting 

algorithms such as Canning et. al.’s Buyer Ratings, 

specifically that match-rates can be very low. We have also 

shown that different ad targeting algorithms each carry 

particular weaknesses, yet they can be usefully combined to 

offset weaknesses in each method. The ensemble method 

presented here is designed to elegantly work with missing 

values and features with different intrinsic degrees of 

sparsity, and not only provides for improved prediction 

accuracy, but also enables a greater degree of robustness for 

real-world conditions.  
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