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ABSTRACT 

Demographics are the currency of online advertising. But how 

does an advertiser know that they received the demographics that 

they requested? In online advertising it is routine for 

demographics to be audited by a "trusted" third party source such 

as Nielsen or Comscore. This third party is able to review a 

sample of online traffic, and then send back data on what 

percentage of that traffic has the demographic trait that the 

advertiser is targeting. Trusted Demographic Auditors can be 

thought of as “Oracles”. Oracle data is typically only available on 

aggregated batches of requests. How could this data be used, then, 

to predict the demographics of individual requests? The paper 

discusses methods for predicting demographics from aggregated 

data. In particular we show results from sevcral algorithms on real 

ad server data. 

Categories and Subject Descriptors 

D.4.8 [Performance (C.4, D.2.8, I.6)]: Modeling and Prediction 

General Terms 

Measurement 
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1. INTRODUCTION 
In order to reach customers, advertisers need a lingua franca to 

find their customers across multiple mediums. The currency 

would ideally be universal in that a descriptor’s meaning is the 

same whether in television, websites, radio, billboards and other 

mediums. The currency should also enable advertisers to target 

their customers without being perceived as being overly intrusive.  

Demographics have traditionally met all of the above criteria. For 

this reason most digital advertising products including Facebook, 

AOL, Google Adwords, Microsoft Bing, Yahoo and others, allow 

advertisers to target based on demographics. 

The widespread use of demographics for targeting and billing 

introduces two problems for advertisers. Firstly, where should one 

advertise to reach an intended demographic? This could be termed 

the “Demographic Prediction Problem”. 

Secondly how does the advertiser know if they indeed reached 

that demographic? This could be termed the “Verification or 

Ground Truth Reporting Problem”. 

In order to solve both problems, measurement companies often 

maintain their own paid panels of individuals who allow their 

personal information to be reported anonymously. For example, 

Comscore’s Validated Campaign Essentials (VCE) product 

comprises a 1 million sized panel of persons who allow their 

online behavior to be tracked and reported (Reagan, 2013). 

Nielsen Corporation maintains a similar panel with 200,000 US 

Panelists, and offers reporting through their Digital Ad Ratings 

product (Nielsen, 2015).  

Because these companies are not selling media, but instead sell 

“ratings measurement” services – to both media sellers and buyers 

- they have some degree of independence and interest in providing 

the most accurate numbers possible. They also have a direct first 

party relationship with their panelists, who agree for their data to 

be used anonymously in aggregate. Many advertisers use these 

measurement companies as their ground truth for measuring 

campaign outcomes as well as billing. In the case of Adap.tv, 

approximately 25% of advertisers who are targeting demographics 

use third party measurement for verification purposes.  

1.1 Mechanics of Demographic Assignment 
Modern ad servers work by calling these data providers with the 

traffic they want audited. However rather than sending back 

demographics on the ad request right away, the data provider 

batches up the requests they have received, and then after 

reaching a sufficient threshold, for example, a batch of 10,000 

requests, it can then be interrogated to reports back on the 

demographic percentages in the 10,000 batch of requests. This 

ensures panelist privacy and also is a security feature to ensure 

that the requesting party can’t just develop a cache of the 

demographics for each user, and thereby replicate the panel that 

the data company is paying its panelists to maintain.  

The requestor also sends a convenient label for the traffic to the 

data company – which is still batched to 10,000 – so that they can 

execute particular audits. For example, the requestor can audit a 

particular site (eg. cnn.com), ad campaign, user segment, or even 

time of day. In all cases, a batch of 10,000 requests is created.  

The hard part is next: Each ad request is a billable event, and the 

ad server needs to ensure that the advertiser looking for the 

demographics get the opportunity to show their ad. Thus the ad 
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server needs to predict the demographics of every individual 

request. However the measurement company reports aggregated 

demographics data in batches of 10,000. How can the ad server 

learn to predict the demographics of a request based on training 

data which has been purposely aggregated in order to avoid 

revealing the demographics of individual ad requests? 

This will be the subject of this paper. We propose that predicting 

using aggregated information is a general class of problem with 

interesting properties that are worthy of study. Solving this 

problem is also of great economic importance, since advertiser 

ROI is directly proportional to the quality of demographic 

targeting. 

2. PREVIOUS WORK 

2.1 Demographic Prediction where individual 

case labels are available 
Demographic prediction is a staple of web traffic analysis, and 

much previous work has been published on predicting 

demographics - when individual labels are present. This is a 

“standard” machine learning problem where a subset of users 

have a known class label, and others need to be inferred.  

Some representative work includes Hua et. al. (2007), who used 

Windows live login data to build a set of users with known age, 

gender, and then try to predict probability of age-gender using 

keywords, webpages. Bi et. al. (2010) used a similar approach 

with Bing search queries. Weber and Castillo (2010) also 

predicted demographics using Yahoo! Registered users who have 

self-reported their demographics. Ulges et. al. (2012) used 

Youtube registration data to predict demographics based on video 

viewership. In some other domains there is a similar requirement 

to measure a variable based on samples. For example Geologists 

need to estimate the expected ore concentration from different 

geological deposits, based on sparse exploratory drill holes. 

(Everett, 2013).  

Our work differs from previous work because our demographic 

data is on an aggregated batches – ie. there are no known 

demographics at the individual case level. Where-as the previous 

work is a straight-forward machine learning task with labeled 

cases, the problem that we describe in this paper is not – we don’t 

have labeled cases – instead we have a labelled aggregate. When 

working with this kind of data, a variety of special techniques 

need to be used to cope with the loss of information. 

2.2 Exact Demographic Re-Identification 

Given Sufficient Samples 
It is possible to propose a “degenerate” solution to the problem, 

where individual user demographics can be re-identified exactly. 

Since the ad server can design the batches, it can then send 

samples of the set of users, with a different label each time, and 

observe the resulting probability distribution when each user is 

present in the sample.  

Let U be a 0-1 matrix where columns are users, and rows refer to 

batches. Y is a vector of Oracle-provided audit scores with rows 

equal to batches. The unknown demographics W for each user are 

equal to:  

𝑊 = 𝑈−1 ∙ 𝑌 

This has been used for inferring player contribution ratings in 

team games. Performance information is available at the team 

level, but we want to create rankings for individual team players. 

With enough repeated games it is possible to estimate the 

underlying player contribution scores. Huang et. al. (2006) and 

Menke and Martinez (2009) both describe systems that infer 

individual player performance using team outcome data. 

This kind of solution is possible because the number of games 

(aggregate batches) is large, where-as the number of players in 

each game small. With 8 players, for example, one would expect 

the player’s positive or negative contribution to the final score to 

be about 1/8 = 12.5%. In our domain, the batch sizes are very 

large (eg. 10,000). At this scale, one user’s demographics has 

almost no bearing on the demographics of the aggregated batch; 

signal is about 1/10,000 = 0.01% - orders of magnitude weaker 

than in the game playing example. Thus specialized algorithms for 

selecting audits and using that audit information are needed to be 

effective with this problem. 

Williams et. al. (2004) described a system used by Dstillery for 

predicting demographics from Oracle audits. The system assigned 

audit class labels to individual web requests, and then trained a 

model to predict the 0-1 class label based on requests. Dstillery’s 

algorithm is the closest to our own work, and indeed they are a 

display ads server, where-as the authors of this paper describe 

work at a video ad server. The algorithm that we present has a 

significant computational complexity advantage over Dstillery’s 

approach, which is a critical consideration for ad servers. We 

believe our algorithm also sheds some light on the nature of this 

problem and how it can be efficiently tackled. 

3. PROBLEM DEFINITION 
Let 𝑋 = (𝑋𝐴. . 𝑋𝑁)  be an ordered pair of audit batches, each of 

which is batched by collecting together all web requests having 

property A. Their audited demographics are given by an ordered 

pair 𝑌 = (𝑌𝐴. . 𝑌𝑁). In these audited results, the probability of 

demographic 𝑗 is equal to Pr⁡(𝑑𝑗|𝑥 ∈ 𝑋𝐴). Let 𝑥 = (𝑥1. . 𝑥𝑀) be an 

individual traffic request from  batch 𝑋𝐴 with properties 𝑥1. . 𝑥𝑀. 

Each property 𝑥𝑖 ∈ {0,1} is a 0-1 variable. The properties of the 

request could include browser, time of day, website from which 

the request is being made, and third party information about the 

cookie, and other HTTP headers. Our problem is to predict the 

probability of a demographic for a new request 𝑥 using historical 

audit information. 

3.1 User-Level Definition 
Williams et. al. (2014) reported on a commercial approach to this 

problem in which user features were created, and then batch labels 

assigned, to requests to create training data. For example, given a 

batch of 10,000 users from the website.com, with age18to20 

probability = 0.4, they create a training set with the same 10,000 

users and their request attributes, each labeled with age18to20 

probability equal to 0.41. 

This approach will produce a huge data set. A typical ad server 

might have to process about 2 billion requests per day.  Training 

complexity is at least 𝑂(𝑁 ∙ 𝑀) where M are the number of 

properties and N the number of observations; in this case 2 billion. 

Figuring out how to operate a training algorithm over billions of 

requests would be an exciting Hadoop consulting problem - but is 

this volume of data really needed to solve this problem? 

                                                                 

1 Williams (2014) actually randomly assigns 40% of the 

underlying records to be 1, and 60% to be 0, so as to be able to 

re-use existing Dstillery code. 



3.2 Equivalent Formulation in Audit Space 
Let’s consider what happens after the data above is sent to a 

training algorithm. We will use linear regression as an example, 

defining the problem in “request space”, where 𝑋 is a matrix with 

historical requests on rows and properties as columns, and where 

each element is 0 or 1, and Y are demographics inferred from the 

batch, and 𝑊 is a vector with rows equal to number of properties. 

𝑌 = 𝑋 ∙ 𝑊 

The derivatives for the squared error of case i with respect to each 

weight j equals: 

𝑑𝐸

𝑑𝑤𝑗𝑖
= (𝑤𝑗𝑖𝑥𝑖 − 𝑦𝑖)𝑥𝑖 

where 𝑥𝑖= 0 if the property i is not present, or 1 if it is present, and 

𝑦𝑖𝐴 is the probability provided by the Oracle for batch 𝑋𝐴 cases.  

Since the historical web requests are actually “striped” in batches 

(Wikipedia, 2016), we now observe that 𝑦𝑖 is the same for every 

row in the batch, and also 𝑥𝑖 as 1 or 0 can be summed to create a 

probability which is measured for the batch. We can therefore 

introduce Pr(𝑥𝑖| 𝑋𝐴) which is the probability of property i being 

present given that we are looking at results for batch 𝑋𝐴. The 

batch derivatives now become: 

𝑑𝐸

𝑑𝑤𝑗𝑖
= (𝑤𝑗𝑖 Pr(𝑥𝑖| 𝑋𝐴) − 𝑦𝑖) ∙ 𝑁 ∙ Pr(𝑥𝑖| 𝑋𝐴) 

where N are the number of impressions in the batch.  

We can show that the derivatives for the above formula are the 

same as the derivatives for: 

𝑌 = 𝑃 ∙ 𝑊 

where 𝑃 = Pr(𝑥𝑖| 𝑋𝐴)  is a matrix with properties across and 

audits down, 𝑌 is a vector of length equal to audits with 

demographics, and W is a vector of length number of audits and 

assuming equal audit batch sizes (if they are not equal then the 

error function becomes squared error weighted by the number of 

impressions in each audit).  

We can now calculate derivatives in batches, assuming the 

existence of a new probability matrix 𝑃. This creates a significant 

computational complexity saving during training. Calculating 𝑃 is 

an O(N) operation (assuming the property-audit probabilities are 

hashed in memory) and can be pre-computed in advance in 

distributed fashion. After this, the training algorithm only needs to 

operate on a matrix with size equal to the number of audits times 

properties 𝐴 ∙ 𝑀, so a typical training complexity would then be 

𝑂(𝐴 ∙ 𝑀 + 𝑁). The number of actual audits executed by ad 

servers tends to be small - a typical number might be A=10,000. 

Therefore training time will drop by a factor of around 2x105 

inclusive of the initial pass to calculate the probability matrix. The 

computational complexity reduction is significant – not only is 

training time lower, but many training algorithms need data to be 

loaded into main memory, and since the matrix size is reduced by 

the same factor, it is possible to run more complex algorithms in 

main memory. 

4. DEMOGRAPHIC PREDICTION 

ALGORITHM 
Adap.tv is one of the largest video ad servers in the United States 

in 2015, and is responsible for serving out about 13.2% of all US 

video ads. Google, in comparison, serves 11.1% of US video ads 

per month (Peterson, 2013; Comscore, 2014; Shields, 2015; 

Ember, 2015; Monica, 2015). We collected sampled Adap.tv data 

from July 2014 to July 2015. 39,546,119 observations were used 

to calculate the probability matrix. Oracle Audits were then 

collected at 1 month intervals between July 2014 and June 2015. 

Audit data was used for month m-1 to predict the audit results for 

month m. 

When measuring hold out set accuracy, we found that properties 

that were rare,⁡Pr(𝑥𝑖) < 𝜀⁡, yet had high probabilities of being 

present in some batches Pr(𝑥𝑖| 𝑋𝐴) ≈ 1 would often produce 

predictions that would fail on the hold-out set. We gave these the 

colorful name of “sucker fish”. Spurious variable associations 

have been noted by a variety of other authors to be a problem with 

large data sets (Anderson, et. al., 2001; Fan, 2014; Fan and Liang, 

2014). We found that adding a threshold for the number of sites 

on which the property was expressed, was able to effectively 

remove the spurious “sucker fish” associations. 

For smaller sites, the historical site audit demographics were very 

strong predictors of the future demographics of traffic on the site. 

This didn’t work as well on larger sites such as Facebook. For 

larger sites, segments – i.e. properties that were specific to the 

user such as their interests – were better predictors. 

We also found that when there were multiple segments, and the 

audits for those segments all tended to agree, then prediction 

using the average of segments tended to have good hold out set 

performance. If, on the other hand, there were multiple segments 

and their audits each disagreed, then it tended to indicate that the 

user/computer had mixed behavior and was hard to predict. In 

these situations we found that using the site was much more 

predictive. 

We defined our predictor BAVG as follows: 

BAVG = 𝑊 ⋅ SAVG + (1 −𝑊) ⋅ U 

Where U was the historical audit for the URL or site. This 

provided a robust prediction if there was no segment information 

or the segment probabilities were contradictory (see below): 

U = Pr(𝑑𝑗|x ∈ X𝑈) 

SAVG were the average of audit results for segments on the web 

request, and only segments are averaged which appeared more 

than a threshold 𝜀.. 

SAVG =
1

#X𝐴
∑Pr(𝑑𝑗|x ∈ X𝐴)

X𝐴

: Pr(z ∈ X𝐴) ≥ 𝜀 

Weights 𝑊 minimized the squared error between the predictor 

BAVG and actual demographic audit results. The weights 

determined how much emphasis to put on user-specific 

information (segments) versus the site URL. If the segments had 

high disagreement D, then more weight would be placed on the 

site. 

𝑊𝑇:min∑(BAVG(𝑑𝑗|x ∈ X𝐴) − Pr(𝑑𝑗|𝑥))
2

X𝐴

: 𝐷(𝑥) ∈ (𝐿𝑇 . . 𝐻𝑇) 

Each weight 𝑊𝑇 was defined for a different level of 

“disagreement” between the segments, where disagreement was 

defined as the standard deviation of segment audit probabilities. 



𝐷(𝑥) = √
1

𝑁
∑(Pr(𝑑𝑗|𝑥 ∈ 𝑋𝐴) − SAVG)

2

𝑋𝐴

 

We also defined one other algorithm for analysis: segment at 

random “SEGR”, which selected one of the web request 

properties, and returned its audit results without modification. 

This was a good diagnostic to see the effectiveness of “picking a 

segment at random”. 

 

Figure 2. Standard deviation for audit probability from set of 

segments on incoming request (x-axis) versus hold-out set 

prediction quality (y-axis). The more that the segments 

disagreed, the worse became the prediction performance. 

5. ACCURACY MEASUREMENT 

TECHNIQUES ON AGGREGATED DATA 

5.1 Algorithm Audits 
Measuring accuracy is also non-trivial since there is no 

independent source of truth other than the Oracle. Therefore we 

needed to devise a method for measuring algorithm accuracy. We 

called these “algorithm audits”. 

Let’s say that a web request has been processed by the prediction 

algorithm above, and a demographic prediction created. This 

prediction could now itself be regarded as another 0-1 property of 

the web request. We can now create a batch label consisting of the 

combination of algorithm + demographic + score threshold for 

this particular web request (eg. Alg1 + M18to24 + 0.15..0.20).  

In our experiments we used 5 algorithms, 6 score buckets and 24 

demographics. For each algorithm audit the Oracle responded 

with another 24 demographics showing “actual” impressions 

across the demographics. This led to 17,280 combinations of 

algorithm + predicted demographic + score bucket + actual 

demographic and the resulting actual probability. Given an Oracle 

audited score tuple, s(a, di, sai, dj, sai) 

5.2 Demographic Population Distributions 
For each predicted demographic and probability (eg. Alg1 + 

Male18to24 + predicted probability=15%..20%), we could now 

show the distribution of actual returned demographics (eg. Male 

18to24=12%, Male25to34=10%, ...., Female65+=4%). For an 

accurate demographic prediction algorithm – and a high 

prediction score for Male18to24 such as 20% - we would ideally 

see 100% of actuals in the true demographic, and then 0% in 

erroneous demographics. These graphs are shown in figure 3 and 

4. This provides an easy to understand graphical picture of the 

quality of the prediction, and the match to ideal can be calculated 

using several methods (we will describe one method next). 

5.3 In-Target Percentage 
One method for summarizing the distribution match is to calculate 

the in-target percentage; which we can define as the percentage of 

the returned Oracle distribution that falls into the correct 

demographic. This also happens to be the key metric that 

advertisers use when planning their campaigns. In-Target 

Percentage is equal to the percentage of impressions bought which 

match the demographic that they are targeting – this rate should 

be proportional to advertiser revenue per impression. 

Many reporters talk about achieving In-Target Percentages of 

46% or better. However it is usually omitted that expected In-

Target Percentages vary based on the particular age-gender range 

that is being targeted (Nielsen, 2014). For example, Adults 25 to 

54 has a random In-Target rate of 56% - so actually a report of in-

target at 50% is actually worse than random. Therefore in order to 

make the demographics comparable, we typically add the 

expected In-Target Rate at random, and then report on In-Target 

Lift as the In-Target Rate divided by the random In-Target Rate. 

This provides an apples-to-apples measure of quality. 

Figure 5 shows that BAVG produces 5.1x In-Target Lift if an 

advertiser were to use predictions in the 20% or above prediction 

bucket. 

5.4 In-Target Estimate of Bid Error 
Although In-Target Percentage is used widely in business, it is not 

ideal for ad buying calculations. We need a measure that captures 

the quality of prediction across all traffic and predictions.  

It is typical in machine learning to measure prediction quality 

using Area Under the ROC curves (AUC). However this can lead 

to misleading results in this particular domain. AUC is invariant 

to scale, shift and rank-preserving non-linearities. If the in-target 

prediction is consistently offset too high, or consistently scaled 

too low, then the resulting bid prices will be too high, revenue 

losses will accrue.  

We therefore need another measure that captures the effectiveness 

of the in-target prediction for ad buying purposes, where the 

particular scale and bias in the numerical score matters. During 

bidding, the absolute difference between bid price placed 𝑏𝑖 given 

the prediction provided, and optimal bid price 𝑏𝑖
∗
, had we had a 

predictor that exactly equaled actual is equal to: 

𝑒𝑟𝑟𝑡 =∑|𝑏𝑖
∗ − 𝑏𝑖|

𝑁

𝑖

⁡(6) 

A bid that maximizes spend subject to a 𝐶𝑃𝐴𝑡 constraint is to set 

bid price equal to the in-target rate multiplied with 𝐶𝑃𝐴𝑡 

𝑏𝑖 = 𝑦𝑖 ∙ 𝐶𝑃𝐴𝑡 

where 𝑦𝑖 is the in-target rate of impression i., Assuming 𝑦𝑖
∗ is the 

actual in-target rate (that the predictor should have predicted), we 

can now re-write our bid error formula (6) as follows:  

𝑒𝑟𝑟𝑡 =∑|𝑦𝑖
∗ ∙ 𝐶𝑃𝐴𝑡 − 𝑦𝑖 ∙ 𝐶𝑃𝐴𝑡|

𝐼

𝑖

 

0.005 0.01 0.015 0.02 0.025 0.03
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

segment probability variance

te
s
t 

s
e
t 

c
o
rr

e
la

ti
o
n

Segment probability variance 

R statistic in hold-out set 



= 𝐶𝑃𝐴𝑡∑|𝑦𝑖
∗ − 𝑦𝑖|

𝑁

𝑖

⁡(7) 

Therefore, the sum of difference of in-target predicted versus 

actual better captures the economics of how in-target rates are 

used in ad buying than some of more commonly used metrics 

such as AUC. Figure 11 shows squared differences by 

demographic for BAVG versus SAVG. 

We can also show overall prediction quality graphically by 

showing a scatterplot of forecast versus actual using the prediction 

buckets as the forecasts. A perfect predictor would have 

predictions exactly on the diagonal of this chart. Any divergence 

is This is shown in figure 6.  

 

Figure 3. Distribution comparison for two algorithms; each 

algorithm is predicting high probability of demo=1011 

(Female Age 55-64). One can see that BAVG has more Oracle 

impressions in the 1011 bucket, and fewer in other buckets. 

 

 

 

Figure 4. Distribution comparison for two algorithms across 

several demographics. In general BAVG produces more 

impressions in the correct demographic, and fewer in 

incorrect demographics. 

 

Demographic Expected 

In-Target 

(random) 

Demographic Expected 

In-Target 

(random) 

FEMALE 18-20 2.54% MALE 18-20 2.78% 

FEMALE 21-24 2.99% MALE 21-24 3.68% 

FEMALE 25-29 3.72% MALE 25-29 6.23% 

FEMALE 30-34 3.77% MALE 30-34 5.29% 

FEMALE 35-39 3.57% MALE 35-39 4.67% 

FEMALE 40-44 4.09% MALE 40-44 5.03% 

FEMALE 45-49 4.26% MALE 45-49 5.37% 

FEMALE 50-54 5.31% MALE 50-54 4.66% 

FEMALE 55-64 9.48% MALE 55-64 8.71% 

FEMALE 65+ 7.58% MALE 65+ 6.26% 

 

Figure 4. Expected In-Target Rates at random for 20 mutually 

exclusive demographics. The expected rate for any 

combination can therefore be summed, eg. the expected In-

Target Rate for F25to49, assuming random ad serving, is 

19.4%. 

 

lower upper BAVG SITE SAVG SEGR 

0.20  1.00  5.19  4.62  4.17  3.91  

0.15  0.20  3.53  3.15  3.09  2.82  

0.10  0.15  2.14  2.23  2.84  2.18  

0.05  0.10  1.18  1.23  0.94  1.27  

0.01  0.05  0.64  0.98  0.88  1.11  

0.00  0.01  0.06  0.12  0.47  0.42  

 

Figure 5. In-target lift for 6 probability thresholds. In the 

highest probability bucket, predictions have a lift that is  

 

 

Figure 6. Prediction versus actual for SAVG (left) and BAVG 

(right). Bubble size is equal to the percentage of traffic in this 

prediction bucket. BAVG has much lower average error. In 

addition, SAVG even shows some signs of regression the mean 

phenomena – the lower bucket is too high and the highest 

bucket is too low. This can occur when spuriously high or low 

predictions are used. BAVG reverts to site information when 

there is disagreement amongst segments. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1011 1011-ALG_BAVG-0.2- 1011 1011-ALG_SEGMENTAVG-0.2-

1011 1011-ALG_SEGMENTR-0.2- 1011 1011-ALG_SITE-0.2-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1003 1003-ALG_BAVG-0.2- 1003 1003-ALG_MAXSCORE-0.2-

0

0.05

0.1

0.15

0.2

0.25

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

2005 2005-ALG_BAVG-0.2- 2005 2005-ALG_MAXSCORE-0.2-

0

0.05

0.1

0.15

0.2

0.25

0.3

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1012 1012-ALG_BAVG-0.2- 1012 1012-ALG_MAXSCORE-0.2-

-5%

0%

5%

10%

15%

20%

25%

30%

35%

-5% 0% 5% 10% 15% 20% 25% 30% 35%

A
ct
u
al

Predicted

-5%

0%

5%

10%

15%

20%

25%

30%

35%

-5% 0% 5% 10% 15% 20% 25% 30% 35%

A
ct
u
al

Predicted



Low Hi 

BAVG  

mean 
pred 

BAVG  

Oracle  
actual 

BAVG  
traffic 

SAVG  

mean 
pred 

SAVG 

Oracle  
Actual 

SAVG 
traffic 

0.20  1.00  28.3% 30.5% 4.3% 22.7% 31.7% 6.8% 

0.15  0.20  19.3% 17.0% 1.3% 16.8% 17.1% 1.0% 

0.10  0.15  11.7% 11.8% 7.3% 15.5% 11.8% 9.8% 

0.05  0.10  6.4% 7.6% 53.9% 5.1% 7.8% 35.8% 

0.01  0.05  3.5% 3.5% 16.2% 4.8% 3.0% 21.9% 

0.00  0.01  0.4% 0.7% 17.0% 2.5% 0.7% 24.6% 

 

Figure 7. Predicted demographic probability versus actual 

demographic probability.  For example, for traffic that was in 

bucket 0.20..1.00, the BAVG algorithm predicted the traffic’s 

probability of having the demographic equal to 28.3%. Actual 

was 30.5%. SAVG predicted 22.7%, which was much lower 

than actual at 31.7% 

 

Demo BAVG 

squared 

error 

SAVG 

squared 

error 

Demo 

 

BAVG 

squared 

error 

SAVG 

squared 

error 

F 18-20 0.033% 0.038% M 2-11   0.010% 0.108% 

F 21-24 0.084% 0.135% M 12-17 0.074% 0.144% 

F 25-29 0.017% 0.029% M 18-20 0.062% 0.119% 

F 30-34 0.044% 0.030% M 21-24 0.013% 0.015% 

F 35-39 0.039% 0.001% M 25-29 0.038% 0.058% 

F 40-44 0.016% 0.019% M 30-34 0.038% 0.050% 

F 45-49 0.028% 0.055% M 35-39 0.037% 0.065% 

F 50-54 0.010% 0.020% M 40-44 0.079% 0.082% 

F 55-64 0.094% 0.105% M 45-49 0.057% 0.085% 

F 65+ 0.133% 0.091% M 50-54 0.036% 0.042% 

 

Figure 11. Mean absolute error across entire range of 

prediction scores, weighted by traffic, by demographic for two 

algorithms. Error is lower for BAVG in 17 out of 20 cases. 

 

5.5 Controlled Test Ads 
In order to test the demographic prediction systems in practice, 

they were deployed and used for 6  live advertiser campaigns. We 

created 3 ads using algorithm BAVG and another 2 using SAVG. 

Female 18to24 was chosen as the demographic target, because the 

background rate was low (5.37%) and so it would be easier to 

measure statistical significance. The ads each were to deliver 

5,000 impressions over 30 days with a maxCPM of $10. We were 

only able to test two of the algorithms in this way. This provided 

an end-to-end test on a major ad server, with the only variation 

being the demographic prediction algorithm. The results suggest 

that BAVG delivers 3.5 lift over random, and SAVG delivers 2.3 

(Figure 8). 

5.6 Comparisons to Commonly-Used 

Commercial Demographic Providers 
For comparison we also audited 12 demographic provider 

companies against the Oracle, and the very best of those showed 

an in-target lift of 2.4 over random (actually comparable to SAVG 

at 2.3). The average lift over random was 1.6 (Figure 10). These 

12 particular provider companies were only selected because we 

had clear naming of age-gender and it matched our test 

demographics of W18to24 – we did not filter the list in any way, 

so it provides a useful picture of expected accuracy having 

randomly drawn 12 commercial demographic providers. 

One possible reason why both SAVG and BAVG performed well 

compared to commercial data providers is the latter might set their 

services to overly emphasize recall at the expense of precision. 

Ultimately advertisers pay for these services only if they find 

them useful, these services may be inclined to provide a predicted 

positive in many more cases where the evidence for age or gender 

is slim. 

For example, were we to buy the top 12.9% of traffic in BAVG, 

lift would drop to 2.1x. If we had to buy the top 66.7% of traffic, 

lift would drop further to 1.18x (Figure 7 and 5). Thus it is 

conceivable that the commercial services could be capable of 

higher lift than what we are seeing here, if they were to report 

back at a lower rate. 

  Cell Oracle  

reported  

random  
occurrence  

for 

W25to54 

Oracle  

reported  

W25to54  
in-target  

rate; test  

campaign 

In-Target 

Lift 

 

Imps 

BAVG All Ads 5.37% 19% 3.55 5,952 

Fresno 5.37% 20% 3.73 3,017 

Shreveport 5.37% 19% 3.60 1,566 

Wilmington 5.37% 17% 3.09 1,369 

SAVG All Ads 5.37% 12% 2.29 3,289 

Florence 5.37% 10% 1.79 1,443 

LittleRock 5.37% 14% 2.67 1,846 

 

Figure 8. Demographics purchased in a Live Ad Campaign 

targeting W18to24, with Oracle reported In-Target 

Percentage and Lift reported. 

 

Demo 
Company 

In-target  
lift  

over  

random 

Demo 
Company 

In-target  
lift  

over  

random 

A 2.39 H 1.42 

B 2.26 I 1.36 

C 1.89 J 1.08 

D 1.82 K 1.02 

E 1.81 L 1.01 

F 1.67 M 1.00 

G 1.43   

 

Figure 10: Twelve Demographic Provider companies (names 

withheld) and their in-target rates for W18to24 as measured 

by Oracle. In-target lift ranges from 1 (random) to 2.39 for 

the very best company. The companies listed are from a set 

including V12 Group, DLX Demographics, Dataline, BK 

Demographic, IXI, Media Source, Webbula, Experian, 

VisualDNA, I-Behavior, Lotame, Alliant, Relevate. 

 

6. CONCLUSIONS 
We have discussed the problem of predicting from aggregated 

labeled data. We have also shown how the problem can be 

decomposed to reduce training complexity by separating 

probability calculations from the training step and changing the 

problem to one in audit space instead of request space. We have 

also reported on some algorithms and shown how algorithm 

measurement can be performed. 
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