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Abstract

The aim of this paper is to present a model of how systems can organ-
ise into multi-celled communities based around the biological concept
of mutualism (Boucher, 1985). The resulting model will be shown to
be applicable to understanding phenomena in a variety of domains
including economics, sociology, and other environments where simple
units are subject to local and global forces. The paper questions the rel-
evance of the Prisoner’s Dilemma in understanding the behaviour of
these systems, and speculates that swarm-like models may actually
comprise an equivalence class. It is suggested that a movement to
models more like those traditionally defined in population biology may
well provide fruitful insights into the construction of multiple adaptive
systems.

Target areas: Parallel models, Collective behaviour, Biological mod-
els, Cooperation in Multi-agent systems



Introduction

Life has existed on this planet for a long time; over three and a half billion years. However, for
much of our planet’s history organisms were nothing like the mammalian forms of today or the
striking species of the Cambrian period. Rather, the humble blue-green algae,dinoflagella, and
other low-level cellular life, have populated our planet for eons. How did these simple organisms,
approximately 1.5 billion years ago, begin the heady march towards multi-celled organisation?

The aim of this paper is to present a model of how systems can organise into multi-celled commu-
nities, based around the biological concept of mutualism (Boucher, 1985). The resulting model will
be shown to be applicable to understanding phenomena in a variety of domains, including econom-
ics, sociology, and other environments where simple units are subject to local and global forces.
These results suggest that cooperation is a natural limit behaviour of a broad class of adaptive sys-
tems, a result which has implications for the way we design and build multi-agent systems.

Model

The model uses a group of cells situated on a spatial lattice, where each cell does nothing more than
to take inputs from its local region, and produce outputs to this same region, and by this process we
assume it creates energy and keeps itself alive. Unparameterised equations for the system are given
below:

r i(c) is the level of a resourcei in a particular cellc, where this level is bounded between 0 and 1,
andi can take any value from1 to R. e(c) is the energy of a cell and is bounded between 0 and 1.
φ(c) is the set of cells in the neighbourhood ofc, with the neighbourhood sizecard(f(c)) = N. Each
cell consumes and produces a resource defined bycons(c) andprod(c). In equation (1)cprod, nprod

etc are meant to be read as “all cellsc which producei”, formally they are defined as:cprod = e(c) if
prod(c)=i and is otherwise 0;ccons = e(c) if cons(c)=i and is otherwise 0;nprod = e(n) if prod(n)=i,
and is otherwise 0;ncons = e(n) if cons(n)=i, and is otherwise 0.f(.) is a function which gives a par-
ticular “external” payoff value based partly on the behaviour of the cellb(c), but also on whatever
other capricious unknown variables that function may happen to be based on.f(.) is meant to cap-
ture the idea of “external factors in the environment”. In adapting to these forces, each cell has a set
of classifier-rule controls, conditional upon the behaviours of their neighbours.conbj(c) is the
response part of the rule (gives the value of the behaviour which the cell will adopt),contj(c) is the
target cell whichc is sensitive to,conoptj(c) is the condition part of the rule. The jth rule is fired if

r i c( )˙ cprod ccons– nprod ncons f b c( )( )+

n φ c( )∈
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∑+=
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the the value for conoptj(c) is the closest to its neighbour’s behaviour b(contj(c)) (3).

The change in level of a resource (equation 1) should be read as being equal to the energy of all
neighbours who are producingi minus all neighbours who are consumingi; plus the cell’s own pro-
duction of this resource minus the cell’s consumption of this resource.

The change in energy of a cell (2) is given by the amount of input resource which is present in the
cell’s immediate neighbourhood (itselfc plus its neighboursn), minus a small constant which is the
energy conversion cost.

Figure 1: Interaction neighbourhoods corresponding toN=1, N=4 andN=8. Cells
consume inputs and produce outputs, changing the quantity of those elements within
their own cell. Their production and consumption also affects the nearby cells in
their interaction region, such that any consumption in their cell will also deplete the
same resource in their neighbour’s cell. The arrangement means that one cell may
produce output which another cell uses as input, leading to various resource interde-
pendence relationships.

Equation (3) adds a suite of classifier system-style production rules for sensing and responding to
the the behaviour of each cells’ neighbours. By developing local rules for changing each of their
behaviours, cells have the ability to collectively act to increase or decrease the payoff they receive
from the function which appears in equation (1),f(.).

f(.) is meant to capture an abstract phenomena, which we shall illustrate through the help of an
example, the common sea sponge,porifera. Porifera are cellular grade animals, which means that
they are just a group of specialised cells, with more macroscopic divisions such as organs not
present. They are usually immobile, and survive by orientating themselves to the current and filter-
ing nutrients in the water. An interesting feature of these sponges is that their multiple cellular parts
have evolved a global structure capable of together enhancing reward:a funnel through which
water and nutrients can be directed. This idea of individual units selecting various strategies which
collectively give rise to reward is captured in the idea of having individual behaviours and a global
rewardf(.) which is a function of these behaviours.

The particular values forprod(c), cons(c), and the control suite,con(c) are all considered to be
changeable parts of the model (Ashby, 1962) and may be subjected to an “evolutionary” process
(ie. optimisation) to increase the energy cells each receive from the environment. The optimisation
strategy used in the simulations reported here was to have high probability of a cell being replaced
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if it had low levels of energy:

“replacement” meaning that all cell values, including importantlycons(c) and prod(c), are ran-
domised to new values. Other methods such as Stochastic Genetic Algorithms and Real-coded
Mutation / Hill Climbing have also been experimented with, to similar effect.

The model was implemented on the Maspar, a 4092 processor parallel mesh computer with a phys-
ical architecture particularly well-disposed to implementing the spatial computations required by
the model. The next section will discuss some of the results achieved using various parameter val-
ues.

Modelling Systems

The basic model outlined above is similar to models in other disciplines such as economics and
physics. By selecting various parameter values, many of these models may be simulated.

Ecological Model (R=20, N=8)

The system can be made to model a hypothetical population of cells under various energy and
neighbourhood conditions. Here cells are thought of as the individual units of the model, and
resources are chemical structures which exist in the environment and provide nutrients for the cells.
“Death and replacement” are implemented using the replacement scheme (4), with global reward
f(.) set to zero. The resulting model is designed to show the behaviour of the system with local
interactions only under “evolutionary factors”.

Figure 1 shows an example run of the model using these parameters and selection rule. Importantly,
the result of these tests show that the number of cooperators (those in the population who exchange
resources to each other’s benefit) increase over time, with the number of defectors remaining con-
stant or decreasing. These results will be discussed in detail later in the paper, where the limit
behaviour of the system will be analysed explicitly.

Figure 3: (B) After 1000 trials average energy of parasitic cells deviates slightly
around the population mean, where-as the energy of cooperative cells is higher.(A)
The number of cooperative cells (due to mutation and replacement) has also
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increased, while the number of parasitic cells has remained the same or decreased.

Ising Spin Model (R=2, N=1..8)

With some interpretation, the formal processes in the model can be utilized to realise an Ising spin
model (Hertz, Krogh and Palmer, 1989).

The Ising model uses the concept of atoms arranged on a lattice, representing the structure of the
material. Each atom has a spin and can take one of two values, +1 or -1. The spin of each atom i is
determined by summing the interaction strengths in its local neighbourhoodwijSj (meaning the
interactions are correlated with the spins), and adding to this a term representing an external mag-
netic force applied to the system. The equation for the force on an atomi, is then:

with the spin being determined as:

Given uniform exchange interaction strengths, the local fieldhi is therefore maximised as:

hi = max, if∀Sj Sj>0 or ∀Sj Sj<0

hi = min, if the positiveSj exactly balance the negativeSj

andhi will have a value inbetween min and max otherwise.

The characteristics of the model in this paper are similar to the Ising model. AssumingN=1, the
local exchange strengthe(c) is dependent upon the binary “spins” (or binary configuration) of the
local cellcons(c)prod(c),and its neighbourcons(n)prod(n), where:

e(c) =max, ifspin(c)spin(n) are 0110 or 1001
e(c) =min, if spin(c)spin(n) are 0101, 1010, 0011, 1111, 0011, 0000
e(c) = value ³ min and < max, ifspin(c)spin(n) is another combination.

External forcehextis analogous to the global reward functionf(.). Spins are flipped probabilistically
according (3), with the resulting model stabilizing into spins of either maximum binary value,
although with a slight inconsistency being that the model exhibits only positive interaction forces.

hi wi j Sj h
ext

+

j
∑=

Si sign hi( )=



Figure 4: Energy maximisation in the Ising spin ana-
logue.

Macroeconomic Models

In economics cooperation can be seen routinely in the formation of conglomerates and vetical inte-
gration practices in Japanese firms. Economic models of such processes have been developed using
Cellular Automata (eg. Kirman, 1994, Darley, forthcomming), and there a great deal of scope for
emulating these models using the current framework.

Human groups

The model has also been compared against human data from experiments testing cooperation
between players in a multi-user game. The main of this data still needs to be verified with a larger
sample size, but broadly shows - and is supported by previous sociological studies (eg. Johnson and
Johnson, 1989) - that human beings are more likely to cooperate under the following conditions:

* when individually reward is hard to achieve,
* when resouces are not scarce, and
* when communication is possible.

These conditions can be artificially induced in the model, in the case of (i) by decreasing payoff
cells get from the environment (decreasingf(.)), in (ii) by preventing the creation of a zero sum
game by allowing replenishment of resources, and (iii) by allowing communication (as opposed to
causing cell control target behaviour to be uncorrelated with its actual value, as seen by a cell). In
each of these cases, the model exhibits the same qualitative behaviour as in the human experiments
- cooperation is either enhanced or impaired.

Further Experiments: Travelling Salesman Problem

Because the particular global payoff function may be provided by a user, the model can be used to
solve various practical computing problems where parallelim may be an advantage. One such
example is the Travelling Salesman Problem (TSP).

The idea for solving the TSP is to encode cities as behaviours, and restrict the neighbourhood to
N=1 so that each “city” (cell) is only connected to one other city. The global reward function is
then set up to reward short paths and penalise illegal conditions such as duplicate cities. The opti-
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misation process encourages cells to form into orderly strands of legal city paths. Initial experi-
ments with the Travelling Salemsn Problem have not yet met with complete success, and there is an
issue with the coarseness of the optimisation algorithm (ie. it doesn’t assign credit well). However,
more simple optimisation problems have been shown to be tractable (such as the “stripes” prob-
lem), and other ideas on the TSP are still being tried.

The Evolution of Cooperation

The evolution of cooperation has emerged as a somewhat puzzling finding in the literature of iter-
ated games, and particularly the well-known Prisoner’s Dilemma model (Axelrod, 1981). The Pris-
oner’s  Dilemma is played according to a payoff table like that shown in figure 6A. Each partner
elects to either cooperate or defect, and receives a corresponding payoff according to the strategies
chosen by both players. In this game defection (exploitation of a partner without giving mutual
benefit) can potentially offer greater rewards than cooperation and happens to be the game’s Nash
equilibrium.

The repeated game with humans, however, usually leads to mutual cooperation, (Poundstone,
1992), and so too it is with the model in this paper (cooperators increase while defectors decrease).
Why does cooperation occur in the model system, and does this provide any insight into the Pris-
oner’s Dilemma? In our model a pair of cells(c,n) can be initialised as:

Cooperate-Cooperate(cons(c)=prod(n),prod(c)=cons(n)): Both cells supply each other.
Cooperate-Defect (cons(c)≠prod(n),prod(c)=cons(n)): Cell c (the “sucker”) provides resources to a
neighbour, but neighbourn (the “parasite”) does not reciprocate.
Defect-Defect (cons(c)=cons(n)): Both cells consume the same resources and so are competiton.

Whilst defection in this framework can initially offer higher payoff, analysis shows that all equa-
tions involving defection go to zero in the limit. Similar analysis shows the eigenvalues for a coop-
erative pair of cells are stable and periodic. Intuitively the reason is that defecting cells eventually
kill off their hosts (and so themselves), whilst cooperative cells are able to benignly maintain each
other.

PERCENT OF POPULATION WITH VIRULENCE
GRADE

I II IIIA IIIB IV V

GREAT BRITAIN

1953 100 0 0 0 0 0

1962-1967 3 15.1 48.4 22.7 10.3 0.7

1968-1970 0 0 78 22 0 0

1971-1973 0 3.3 36.7 56.7 3.3 0

1974-1976 1.3 23.3 55 11.8 8.6 0

1977-1980 0 30.4 56.5 8.7 4.3 0

AUSTRALIA

1950-1951 100 0 0 0 0 0

1958-1959 0 25 29 27 14 3

1963-1964 0 0.3 26 34 31.3 8.3



Figure 5: Mutations in Myxamotosis virus after initial introduction into
hosts in the 1950s. Higher grade strains have lower virulence. (from May
and Anderson, 1983; original data from Ross, 1982)

This is in fact consistent with what is known about the dynamics of symbiosis in nature. For exam-
ple, when the Myxomatosis virus was introduced into the rabbit population in Australia to curtail
its epidemic numbers in the 1950s, the virus was extremely virulent, causing high morbidity. But
soon after its introduction, less virulent strains of the myxoma virus appeared and began to spread
through the population. The drift of myxoma towards various non-lethal strains is shown in figure
5. Thus, since defectors need cooperators to exploit,  successful parasites tend to evolve strategies
for supporting “cooperators” (May and Anderson, 1983).

Figure 6: Graphs showing the energy of a cell implementing four particular strategies given initial
valuese(c)=0.8, e(n)=1.0, r1(c)=0.4, r0(c)=0.0, r1(n)=0.4, r0(n)=0.6. A: The initial payoff matrix
for this system satisfies the requirements for a Prisoner’s Dilemma problem (Axelrod, 1981).B:
Iterating the system according to different strategies leads to cell energy going to zero, except in the
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1953 100 0 0 0 0 0

1962 11 19.3 34.6 20.8 13.5 0.8

1968 2 4.1 14.4 20.7 58.8 4.3
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case of mutual cooperation, in which energy oscillates through positive values, (in this case CC
goes to its ceiling and remains at this value).

Adaptive systems can therefore differ in significant ways from the Prisoner’s Dilemma. Payoff
matrices typically evolve in time, and choice of strategy interacts with payoff values, such that dif-
ferent payoff variables become dependent upon each other. Indeed, only one half of one percent of
the states in the simple linear system analysed here were actually “Prisoner’s Dilemma conditions”
in the sense defined by Axelrod (1981). Thus, whilst provocative, the Prisoner’s Dilemma may not
be a good model to study interaction dynamics in adaptive systems.

It seems that dynamical models incorporating the concepts of adaptation, time and interaction
effects are needed to effectively capture the richness of multiple, interacting, adaptive systems. It
may be more productive, therefore, for designers of multi-agent systems to look to the long and dis-
tinguished tradition of models in biology (eg. Boucher, 1984) which have traditionally incorporated
these effects, for understanding how multi-agent systems can be synthesized.

Towards an engineering praxis of Massively Distributed Agent
Systems: Equivalence classes?

The survey presented above indicates that the model of a system adapting under local and global
forces - a model inspired from the biological concept of interacting cells - may represent a broad
class of dynamical model. Similar systems have previously been analysed by Chris Langton (the
“Swarm Project”) including neutron scattering in a nuclear fission reaction and stock market mod-
els. A variety of physical systems have also been experimented with, including multiple flocking
robot systems (Mataric, 1994; Ünsal and Bay, 1994). This paper suggests that these systems may
all share similar dynamics, and so it may be possible to understand the behaviour of them qualita-
tively.

The practical benefits of this undertaking are significant. Massively parallel multi-agent systems
are arguably the future for AI, providing speed, robustness, and scaling properties not deliverable in
single processor, centralised architectures. (note that perhaps biology already found this out 1.5 bil-
lion years ago). However, in moving to these architectures, engineers are faced with the massive
(and computationally intractable) problem of control. How can distributed biological creatures
coordinate their various multiple components to achieve computational goals? Presently, research-
ers at Santa Fe are exploring this issue (eg. Mitchell, Crutchfield and Hraber, 1994). Treating
locally-interacting “aggregate systems” as an equivalence class opens the possibility of broadly
understanding the dynamics of these systems in general, and engineering them to exhibit appropri-
ate adaptive properties.

In Artificial Intelligence attempts to create distributed internet agents have been plagued by prob-
lems of preventing “defection”, (eg. where one agent decides to greedily “cheat” to get the job
done). Strategies have ranged from centrally imposed standards and protocols to using punative
agents to defer defection (Rosenschein and Zlotkin, 1994). The analysis in this article shows that as
long as agents are able to adapt and no new agents are introduced or changes are made to the envi-
ronment, the system will eventually settle into a state of mutual cooperation. This result provides
guidance on how to design individual adaptive agents, given knowledge about the nature of that



environment (eg. stable/volatile, frequent/infrequent interactions), such that they perform so as to
maximise some externally defined global goal. These analyses, which may ultimately borrow
heavily from work in biology on population interactions, can allow us to understand what level of
cooperation/defection will naturally arise in given environments, and to what extent centralised
protocols, with their associated costs on parallelism, should be imposed.
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APPENDIX B

Qualitative analysis of equations

(would like to get the eigenvectors, maybe next time)



APPENDIX C

Data from human subjects

(still being analysed)

GLOSSARY



Symbols used in this paper

rnd(a..b) returns a uniformly distributed random number betweena and
b

M  maximum level of a resource, cmx (minimum is 0)

ci resource which is consumed by a cell (input resource)

co resource which is produced by a cell (output resource)

cmx level of resourcex in the cell’s immediate environment

N(c) neighbourhood ofc

S Cell c may consume i, but may also consume values ranging
from ci+S to ci-S. S is a parameter expressing the “specificity”
of resources, withS = 0 meaning that resources are completely
discrete from one another. All input/outputs are gradually
decreased according to how far away they are from the target
value, the form of decrease given by function r (response pro-
file).

hi force on a particular atomi

E maximum level of a cell’s energyce (minimum is 0)

cb the behaviour of cellc.

cconb behaviour which cell adopts if control conditions are met.

cconopt the behaviour which cellt should optimally have for the con-
trol, con to be triggered.

ccont the stimulus for the behaviour change control is cellt’s behav-
iour, where t is a neighbour ofc.

ccon a stimulus-response control which senses a neighbour’s
behaviour ccontb and then update’s the cell’s behaviour, cconb



---------------------------------
NOTES

The first four equations of the model describe changes in input and output volume
in the cell’s immidiate vicinity, with 3 and 4 practically identical to the first two,
but describing corollary changes in the physical neighbourhoodN(.). Cells con-
sume from and produce outputs into this neighbourhood at a rate given by the leak-
age constantL . (figure 1). The energy of a cellce is proportional to the amount of
input resource in that cell’s immediate vicinity. Energy is subtracted by a small
constant which can be thought of as representing energy conversion cost, and if
only low amounts of nutrient are present, (eg. < 0.05%), then the cell begins to
loose energy. (5)

Each cell may also express a finite number of behaviourscb (6), and the impact of
these behaviours on the environment is given by functionf(.). The behaviour
which a cell exhibits at any time is the result of an internal control structureccon in
which the cell senses its immediate neighbourccontb and if its neighbour’s behav-
iour matches a predetermined valuecconopt, executes a behavioural response to

r(offset,range)  function which returns a value between 0 and 1 to implement
a smooth degradation of signal match.r may be any monoton-
ically decreasing function, for instance gaussian or linear. For
the purposes of the model a simple linear function was imple-
mented. Note that gaussian or S-shaped curves may have some
biological realisability.

f(.) global payoff function. Increases or decreases nutrient levels
respectively depending upon the behaviours of the individual
cells and whether this meets some “global” criterion.

c a cell

wij exchange interaction strength - local attraction between two
atoms

Si spin of a particular atom, -1 or +1



change its behaviour to that specified incconb.

To get some idea of what behaviours are meant to capture, consider theporifera
the common sea sponge. Sponges are cellular grade animals, which means that
they are just a group of specialised cells, with more macroscopic divisions such as
organs not present. They are usually immobile, and survive by orientating them-
selves to the current and filtering nutrients in the water. What is interesting about
the sponge, is that its multiple cellular parts have evolved a global structure capa-
ble of together enhancing reward: afunnel through which water and nutrients may
be directed. This idea of individual units selecting various strategies which collec-
tively give rise to a reward is captured in the idea of having individual behaviours
and a global rewardf(.) which is a function of these behaviours.

In the model discussed in this paper, cells may also choose a defection or coopera-

tive strategy by either utilizing a parastism or reciprocal resource sharing.
  The defection strategy of parasitism (use without reciprocation) is   rewarding in
the short term, but in the long term the parasitic cell   dies, without leaving any of
its genetic material to follow. (viruses   exception).
  The cooperative strategy of mutual exchange and support is long-term   stable.
Hence, evolution of cooperation in the face of PD-type scenario
NB: situation not PD:
                        Neighbour                reciprocate       consume Cell A                recip-
rocate       10|8  10            0|-5 10 (cooperate)
consume           10|10 10            0|0  0 (defect)
Take PD through time. Add time dimension. Find consume - reciprocate eventu-
ally dies because neighbour dies.
Thus, no dilemma - matrix changes with time. ie. because of the changing
resources, what may be a PD matrix changes over time & in this system develops a

cmcx

˙ cer x i– S,( ) f cb( )+–=

cmcy

˙ cer y i– S,( ) f cb( )+=

N c( ) mcx

˙ L– N c( ) er x i– S,( ) f cb( )+= (3)

(2)

(1)

N c( ) mcy

˙ LN c( ) er y i– S,( ) f cb( )+= (4)

cb cconb
m• ax r cconopt

c–
contb

cconran
,

 
 

 
 =

(5)
ce
˙

10cmci

M
--------------- 5–=

(6)



Nash equilibria uniquely favouring competition.
 Hypothesis: many PD-type scenarios can be reduced to this. esp. biological sys-
tems - parasites die off (unless they find a way to keep the host, aren’t completely
effective in destroying the host, etc.)
that is: the solution to the PD is that in real systems the payoff matrix changes
through time, giving less or greater reward to the defection strategies, thus affect-
ing which strategy is most favoured.
The PD itself, (in its purest form), even in the iterated version, is itself intractable
because the matrix stays the same. (what is the stable strategy - the Nash equilib-
ria??) The Nash equilibria of mutual defection only exists as a stable point given
that payoff matrix. On iterated trials.
 Luce and Raiffa (1957), “some hold the view that one essential role of govern-
ment is to declare that the rules of certain social ‘games’ must be changed when-
ever it is unherent in the game situation that the players, in pursuing their own
ends, will be forced into a socially undesirable position.”
Luce, R. and Raiffa, H. (1957), Games and Decisions, John Wiley & Sons, New
York.
For instance, cellc may consumei, but may also consume values ranging from
ci+S to ci-S. S is a parameter expressing the “specificity” of resources, withS = 0
meaning that resources are completely discrete from one another. In the model,
inputs and outputs to resources either side of the targetx are bounded byS, and all
input/outputs are gradually decreased according to how far away they are from the
target value, the form of decrease given by function r (response profile).
 Simply, it is assumed that resources with closer values will be simiilar to each
other, and may also be consumed by a particular cell, although with gradually less
benefit for the cell. The degree of smoothness is given by the “specificity” con-
stant, S, where S=0 means there is no smoothness in resourcing, and larger values
imply more similarity.
Bolo is an game played between multiple human players and computer controlled
robots over a network. The object of the game is to control the most resources in
the world. Human beings are allowed to team up or break away at their leisure, and
so the game has various strategic aspects which makes it a useful scaled down
model of for example competition between rival companies.

Using research from the social science and psychological literature, a number of
factors were isolated which theoretically seemed to affect interdependence strate-
gies between humans. This list included:

Resource scarsity which decreases cooperation
Non-equal players which can increase or decrease
Hostility of environment which increases



Ease of Communication which decreases
Iterated contact which increases or decreases.
Kin factors

These factors were implemented in the game of Bolo to collect quantitative data on
the emergence cooperation. The results show that cooperation was facilitated in
the second, third, and fifth parameter, and discouraged on the first and fourth.

The model can account for three of these five parameter effects. Resource scarsity
can be implemented as causing the model to become a zero sum game in which
each cell’s energy is normalised by the entire population, such that one cell’s gain
results in less energy for the others in the population. Under these conditions, cells
tend not to cooperate, in effect killing each other off, and finally the cell with the
most energy dying because of lack of support from neighbours.

Lack of communication was modelled by causing cell control strategies to ran-
domly be chosen (rather than selecting the max). This made it difficult for cells to
evolve control strategies based on their neighbours, and impossible in an environ-
ment in which multiple behaviours were required.

Hostility was modelled as globally reducing the amount of nutrient available to
cells. In these conditions, the only cells which could survive were cooperative col-
onies.
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Much new research has been forged into these areas of understanding how to har-
ness natural algorithms. For example Denebourgh has used the behaviour of cer-
tain species of ants heaping together food debries, for a sorting model which in
fact realises a highly parallel version of a hierarchical clustering algorithm.
Recently, Adleman has shown that by careful encoding of DNA molecules, recom-
bination processes can be exploited to create paths in a Hamiltonian path problem,
which can then be sifted to find a solution path. In this paper we examine how to
solve a Travelling Salesman problem using a distributed model such as the one
here.

 Because the global payoff function can effectively be sculpted by the designer, it
is possible to use the model as a parallel system to compute practical computing
problems. In this experiment, cells were specifically encoded as cities, the city
given by which nutrient the cell had preference for. Source and destination cities
were encoded such that maximum local affinity was given to the closest cities,
with decreasing attraction with distance. The global payoff function was then
implemented with terms which decreased nutrients to cells which were duplicate,
and which increased nutrients proportional to the c/path length. After allowing the
population to settle, legal source-destination city pairs could be read off according
to their energy, to form a tour path. Using this arrangement, legal tours could be
generated which heuristically minimised the path length.

Other NP-complete path problems have already been approached by Adleman,
using an approach broadly known as “molecular computation”, (Adleman). In this
approach problems are coded as strands of DNA, with natural physical constraints
on how they may recombine and assemble. Solutions are assembled as polymer
strands, (in fact, every possible solution is generated), and then sifting techniques
are used to mark and then sift out the legal solutions. Using this approach, Adle-
man has solved a 7 city Hamiltonian Path problem, and speculates that the
approach may make it possible to tackle various code breaking problems, such as
the US Data Encryption Standard.

Related work

A number of previous Alife-style models have been presented already, noteably
among these Polyworld, and Tierra. This model differs in that it represents an



attempt to incorporate important models presented in a number of disparate
domains, and understand characteristics within a common framework.
FURTHER DIRECTIONS

Spatially mobile cells, - CA models already exist which have modelled dispersal.
Dispersal perhaps not a very good model of organisatoins, which is the aim in this
case, as most organisations have a spatially fixed internal cellular structure and
rely on communication to effect global behavioural changes.

Replicating cells: no attempt made for cells to replicate and/or invade other
regions. Population CA have modelled this phenomenon such as invasion of intro-
duced species in existing ecologies, outbreaks of Crown of Thorn Starfish along
the Great Barrier Reef, North-Eastern Australia. (Bradbury et. al., 1990).

It is possible that the importance of these factors is small, and cooperation is ade-
quately captured by a spatially localised population. However, parasitism may be a
more powerful strategy in populations where iterated contact is less long-term and
cells can move about.
Further simulations: Harnessing distributed systems for Practical Computing prob-
lems

Using the basic model given in (i), it should be noted that any kind of global payoff
function can be used to encourage the model to take on a particular shape of inter-
est. Thus, the cells, cell interactions and global This global payoff function can in
effect be hand-coded to represent some problem of interest,

In evolution a similar effect may have been responsible for the prominance of
multi-celled organisms in biology. In these cases it is hypothesised that no
dilemma really exists - cells which do not play by the rules die off.

The fact that similar model captures behaviour at various levels of analysis includ-
ing the particles, should be reassuring, since all these systems are governed by the
same physical laws. For example, the same laws which allow particles to cluster
together may also allow cells to.

The evolution of cooperation should perhaps be best understood as a natural con-
sequence of a system in which the payoff matrix varies as a function of time and
players are not trapped into a static, zero win game. Further, as a process recognis-
able as clumping in particle systems, clustering in cellular systems, and as cooper-
ation in social systems.



Of course, all of this should be old news.

Analysis of the system at steady state (with no evolution) shows that cooperation is
the only stable strategy which does not lead to values going to zero.

Depending on the random initialisation of cell resource consumption and produc-
tion variables, cells may possibly be initialised into any number of different con-
figurations corresponding broadly to “cooperation” and “defection”. Thus for
example, a fully mutualistic, cooperating pair of cells will show the property that
the resources produced by one are consumed by the other, and the resources pro-
duced by the other are likewise consumed by the first. (orccons=nprod , cprod=ncons

). A “sucker” however, will be any cell which supports another without receiving
any benefit in return. Finally, two cells may both mutually defect by consuming the
same resources. The respective payoffs for each of these behaviours vary depend-
ing on the state values of the model, and will be discussed below.
for instance, changing from a Prisoner’s Dilemma at c1=.... to a different at .

This broad kind of relationships is designed to reflect the situation of symbiosis in
nature, where different species have different metabolic, behavioural, and spatial
characteristics, and so can affect each other’s resource environment in different
ways.

Detailed analysis of the system with N=1 shows that assuming a closed system

They may produce resources for a neighbour, but that neighbour may not recipro-
cate (Sucker,ccons≠nprod , cprod=ncons)
They may use resources from a neighbour, but not reciprocate (Parasite,
ccons=nprod , cprod≠ncons)
Both they and their neighbour may use the same resources and fail to reciprocate
(Defector,ccons=nprod , cprod≠ncons)
As a consequence of the simplistic model assumptions, Individualists who produce
and consume the same resource are also possible in the model, although rare in
nature! These cells can generally be ignored and don’t affect any of the major find-
ings.
Further experiments: Travelling Salesman Problem

Because the particular global payoff functions are able to be provided by the user,
the model can be used to solve various practical computing problems where paral-
lelism may be an advantage. One such example is the Travelling Salesman Prob-



lem.

The idea for solving the TSP is to encode cells with complimentary input-output
relationships as source and destination cities. The neighbourhood is restricted to a
size of 1, and a global payoff function implemented which gives reward for short
paths. The cells are then allowed to optimise energy. Legal tours fragments can be
read off as pairs of high energy cells. Examples of tours generated using the
method are provided in figure 5, and further details are given in Appendix B.

APPENDIX A

Travelling Salesman Problem

Encoding

For every cell in the population, each is randomly assigned one of the following
initialisations (encodings):

ci = rnd(0..T) 2T

co = ci + T

or

ci = rnd(0..T) 2T + 0.5T + rnd(0..T)

co = ci - T

whereT is the number of towns (cities). The first initialisation corresponds to an
encoding as a source city, and the second to an encoding as a destination. The ini-
tialisation is created so that a source cell as an affinity relation with a destination
cell, the actual source-destination coding being determined by the closeness of the
cities. This local affinity relation means that close cities will tend to attract each
other. Finally, a global reward function is introduced:

f(.) = 100/path length

 which increases nutrient levels to cells as a function of shortness of global tour
length.f(.) may also be used to decrease nutrients to duplicate cities, and so on.

Optimisation



Finally, the cells are subjected to mutation-driven optimisation, in this case the
algorithm used was:

p(mutation) = 1/energy

and allowed to run for a number of iterations.Legal tours can then be read off as
source-destination pairs with “high” energy. (in this case the arbitrary threshold
used wasce > 10.0).

The approach of using distributed cells for computing combinatorial problems has
been pioneered by Adleman in a series of remarkable experiments which were
largely the inspiration for this work. Adleman encoded DNA molecules as city
labels and allowed them to recombine into paths which solves the Hamiltonian
path problem. The reader is referred to this author for more fascinating applica-
tions of molecular computation.

 Behaviours are internal changes which cells can learn (or evolve) which may also
affect the environment in ways, analogous to the way the sponge changed the
physical flow of fluids, and hence the volume of nutrients passing through it.

Thus for instance, in regions of Africa where trypanosomiasis is endemic, indige-
nous ruminants suffer mild infections and with low morbidity, while important
ruminants suffer virulent infections that are usually fatal if untreated, (Alison,
1982). Finally, Dobson (1983), in a survey of 300 parasite-host associations mostly
in invertebrate species, found that there was a general (variational) tendency for
parasites that are “older” in evolutionary time to be less virulent.

Approximately 90% of all bacteria studied have been identified as carrying plas-
mids (parasites incorporated into the cytoplasm), and in some cases bacterial
recombination can take place with these plasmids. This is also theorised to be the
way that cell nuclei were first incorporated into the cell. Levin et. al. (1983) have
claimed that: for plasimids to be maintained in natural populations they must carry
genes that (under some circumstances at least) enhance the fitness of their immedi-
ate hosts or that of cells carrying the plasmid in the populatoin at large.

Empirical studies have shown these new strains of myxoma show decreased repro-
ductive rate. Too high a virulence kills off the hosts too fast, diminishing their
capacity to transmit the infection.

Most medical, paraitology texts assert that successsful or well adapted parasitic



species evolve to be harmless to their hosts. Simply, all things being equal it is to
the advantage of both host and parasite for the parasite to inflict little damage,
The same conditions are found in the present model, and lead to nonbenign defec-
tors eventually killing themselves off. The conclusion which can be drawn is a
novel one. It suggests that if defectors have , they will evolve ways to support
them; and so cooperation will always be a viable strategy in such a system.
Implications for AI

AI has a mandate for adopting massively distributed architectures. Even though
silicon operates 5 orders of magnitude faster than biological wet neurons, biology
still retains the advantage because of its order of 8 processors working in parallel.
Parallelism also provides benefits such as robustness and key speedups in certain
areas where there is an algorithmic disposition for parallelism (eg. vision). When
entering the realm of distributed autonomous processing however, we quickly run
up against the problem of control. How can we expect individualistic cells not to
work in ways which satisfy their immediate payoff? The beginnings of a solution
are found in biology - cells will *adapt* towards strategies which do not compro-
mise their game payoffs.

The broad conclusions of this work is to suggest that cooperation isnot a “para-
dox”, but rather, in adaptive systems, can be anatural adaptation for maximising
payoff. A large amount of work to this extent has already been meticulously
researched through the mathematical biology literature, and superceedes much of
this work. A return to a dynamical systems perspective in this case seems war-
ranted.OUT

but it has only been in the last one and a half billion that multi-celled organisms
have emerged and proliferated. The process driving the adoption of these complex
heterogenous structures appears to have been symbiosis. Symbiosis is a process in
which genetically unrelated organisms enter into a relationship in which each
organism provides some benefit to the other organism. For example, certain spe-
cies of ants have learned to tend and protect aphids, which in return secrete a sug-
ary substance which the ants use for food. The evolution of eukaryotes, the
acquisition of organelles, and the evolution of biotic complexity have all depended
upon the formation of mutualistic relationships between different simple structures
(Price, 1986).

This paper will address two concerns. First a model of symbiosis will be described
which is applicable to a variety of domains, and in which mutual cooperation is the



limit behaviour of the system. Second, the discrepencies between this model and
the Prisoner’s Dilemma will be highlighted, and it will be suggested that the adap-
tive evolutionary systems do not generally face Prisoner’s Dilemma.
OUT

This paper will suggest that analogous forces operating in a variety of classes of
systems lead to the emergence of cooperation, and further, these forces can be
studied and generalities distilled.

Symbiosis and co-evolution appear to be key processes which have been largely
overlooked by the adaptive systems community, and even confused by some poor
applications of  Prisoner’s Dilemma style models of economics or repeated games.
This paper will attempt to show that.
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 By optimising their control set, ells will learn which city to switch to given the selection of city of
a neighbour. the cells identify which  given a source city (neighbour). cells to exhibit behaviour
corresponding to where in the path they exist. The global payoff term, f(.), has not explicitly been
used up to this point, however, here it can be shown that this can be a particularly versatile part of
the model which can allow the user to shape the model to perform computatoins. The global payoff
is a function of cell behaviours and represents the particular the physics of the environment, allow-
ing the cells realization of structures such as seives, funnels, hydrodynamically efficient shapes,
and so forth. For example, if the physics of the environment were such that

f(.) = 0.5-|10-b(c)| / 20 , if ID(c) mod 2 = 0
     = 0.5 - |20-b(c)|/20, if ID(c) mod 2 = 1

f(.) = 0.5, if b(c)=B and ID(c) mod 2 =0
f(.) = 0.5, if b(c)=B/2 and ID(c) mod 2 = 0
f(.) = -0.5, otherwise

then the best solution for the cells would be to evolve classifier rules which have cont(c)=B for
ID(c) mod 2=0 and cont(c)=B/2 for ID(c) mod 2 =1, as consequents, and antecedents that anticipate
and match their neighbours’ behaviours; in other words, the cells should adopt “striped” behav-
iours. Even though credit assignment in the replacement rule is particularly coarse (ie. a bad rule -
or even a good rule which no longer fires because the neighbour’s behaviour changed can typically
result in the death and replacement of the entire cell). However, after several thousand iterations,
the cells robustly tend to adopt the required “striping” behaviours.

Careful selection of f(.) can also allow practical application of the model to various optimisation
problems of interest. On such prototypical problem is the Travelling Salesman Problem, a particu-
larly well-known NP-complete problem.
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