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Abstract

This paper addresses the problem of analysing real-time trajectories ignoring fac-
tors such as rotation, translation, and scale. The problem was tackled using an
ensemble of techniques including Fourier analysis, a method from statistics
called Canonical analysis, and combination methods such as averaging and
stacking. Traditional methods performed poorly when measured against human
scores, but combination methods produced significantly higher results. This sup-
ports theoretical work (Tumer, 1996) which shows that large ensembles of uncor-
related classifiers boosts estimator performance.

1.0 Introduction

This paper addresses the problem of analysing the similarity of real-time trajectories
invariant to rotation, translation and scale. The application for this research is open ended,
and could be applied to identifying signature aircraft trajectories, handwriting identifica-
tion, or recognition of sign gestures. The particular application focused on in this paper is
testing the ability of humans to imitate visually observed trajectories using a pen and tab-
let device.

Because of the need to find scores of smilarity invariant to rotation, translation and scale, a
large part of this paper is an investigation of the methods used to remove these aspects
from the signal. It is shown that although a large number of transforms are available, in
practice their usefulness varies, and even sound methods have implications for the form of
the signal produced. This paper proposes to solve this problem by applying a technique
from machine learning called “stacking” (Briemann, 1992) which averages together a
large number of estimators to minimize the bias incurred through using a single invariance
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method.

2.0 The Trajectory analysis problem

The problem to be addressed is to find a reliable similarity index between two 2D trajecto-
ries. This problem has a wide range of applications. The scoring procedure can be used to
find a trajectory in a database which best matches an observed trajectory, and so can be
used fortrajectory recognition. The application in this article is a little different. Scores
are being used to calculate how well a human being can imitate a real-time computer gen-
erated target. In either case, the calculation of a similarity index is clearly a very useful,
and very hard problem. Moreover, concentrating on the smoothness, and other aspects of
the scores themselves provides a far more stringent criteria for assessment, than simply
looking at identification accuracy on some test set.

Data was collected by first creating a set of target or template trajectories, which consisted
of (x,y,t) vector for a moving shape which is shown on a computer screen. Human subjects
viewed these targets and then had to imitate as best they could by moving the pen on the
graphics tablet. Subjects’ positions, calledresponses, were recorded by custom software at
a rate of 100MHz.

The primary difficulty in analysing these stimuli was that there were virtually no con-
straints on the targets and responses. There were an arbitrary number of templates, and
they could take any form or size. This made it is prohibitive to use neural networks or any
other parametric approximation method, to train on a set of prototypes and then calculate
the mismatch with the response. Therefore emphasis was placed in finding general mathe-
matical scoring methods.

Figure 1: Two test stimuli. The shape on the left is an idealized shape, the shape on the right is an
image drawn by a human being.

2.1 Overview of Scoring procedure

Analysis of trajectories was performed in three steps. First, stimuli were preprocessed to
reduce the amount of incomming data, and to smooth over high frequency noise. Second,
invariance methods were used to transform each trajectory into a rotation, scale, transla-
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tion invariant signal. Finally, the two invariant signals were matched using vector cross-
correlation to calculate their overall similarity.

3.0 Pre-processing

Before employing the invariance transforms, a number of domain specific effects needed
to be dealt with. Firstly it was found that hand tremor in the form of low ampliltude, high
frequency noise, was very common and was essentially irrelevant to the match. Hand
tremor was removed by applying a process of decimation, interpolation, and smoothing to
both target and response. Decimation and smoothing was accomplished by performing a
fast fourier interpolation at×8 reduced resolution. This was favoured over the ordinary
method of sliding-average smoothing, which was found in experiments to tend to remove
high amplitude information, especially the corners of trajectories (Duda and Hart, 1973).
This was followed by single pass of sliding-average smoothing to remove some residual
“ringing” which was characteristic to having sharp boundaries approximated using the fast
fourier method.

The complete preprocessing involved a single pass of spatial smoothing withs=2 (simply
taking the average of neighbouring points) applied to the functiong interpolated using2M
points to give a reduced vectorr.

where

The final vector forg has onlyIM points. F-1 is the inverse discrete fourier transform taken
with 2IM equally spaced points.

This procedure also removed the existence of speed-up and slow-down in different seg-
mentes of the trajectory. Subjects typically speeded up on long straight sections, and
slowed down on turns, resulting in a greater density of points being recorded in turning
regions. Because the target moved at a constant speed, matches based on(x,y,t) trajectories
were quite poor. Interpolating both trajectories uniformly gave far more reliable empirical
performance. Because of interpolation, the (x,y,t) vectors became a series of(x,y) vectors
with time implicit in the number of data components columnwise.

4.0 Invariance Methods
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Invariance methods are used widely throughout areas of machine learning, pattern recog-
nition, and signal processing. They are used so widely because in theory they give a sys-
tem the ability to work with a vector representing some object, which is not affected by
how that object finds itself transformed in the environment.

Methods for rotation, scale and translation invariance are discussed in the following sec-
tion. Some of these turned out to not be good invariance methods, whilst others trans-
formed the signal in ways which distorted the order of neighbouring signals, leading to
unsmooth relative classifications for stimuli. Biased signal transforms can cause problems,
for instance, improperly compressing the dynamic range of some stimuli so that they
appear closer together than they actually are, and performing other warpings of the “stim-
uli neighbourhood space”. This effect warrants particular attention since these methods
are routinely used as front-ends to pre-processing stages for pattern recognition tasks, in
which such neighbourhood relations are crucial.

Notation

In the following sectionsf=(x,y) is a column vector of datapoints representing the xy posi-
tion of the target, and g=(x,y) is a response signal which may be rotated, translated, scaled,
and subject to noise. Scale, Translation and Rotation functions are defined as.

where

Functions which are invariant to these transforms are referred to asSi, Ti, Ri.

4.1 Log-polar Transform with central moments

The Log-polar transform works by converting each(x,y) coordinate pair in the original
image into polar co-ordinates:

Polar(x,y) = (r,θ) where
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θ = tan-1(y/x)

Figure 3: Rotation and scale in xy coordinates are converted into translation in
polar coordinates

In polar co-ordinates, rotation in cartesian coordinates results inθ in being shifted by∆θ.

R(r,θ,∆θ) = (r,θ+∆θ)

Similarly, scale changes in cartesian coordinates causer to be shifted by∆s in polar coor-
dinates, converting scale into translation:

S(r,θ,∆s) = (∆s.r,θ)

Since both rotation and scale cause translation in polar coordinates, a method which can-
cels translation from a polar representation will remove scale and rotation from the trajec-
tory entirely. Scaling (translation inr dimension in polar coordinates) can be addressed by
puttingr onto a logarithmic scale, which forces images which are larger than the template
to only have very small differences in theirr values. This gives the Log-Polar transform:

LogPolar(x,y) = (r,θ)     where

θ = tan-1(y/x)
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Figure 2: log-polar transform of the author

Removing rotational effects (shift inθ in polar coordinates) from the image however is a
more difficult problem. Becauseθ has a cyclical coordinate system (eg. 460 degrees = 100
degrees), shifts inθ can cause an image to be shifted translationally, and if the resulting
values ofθ exceedπ, ie.θ+∆θ > π, then points in the image cycle around to appear at the
opposite axis >-π. An example of this effect can be seen in figure 3.

Figure3: Example of the cycling effect found under high relative difference in
rotation between one image and another. Both stimuli are identical, however the
blue stimulus is rotated 120 degrees from the yellow (a). A rotation invariant
transform should show the stimuli to be identical, however the log-polar map of
both stimuli shifts the blue stimulus up and past the 2π boundary, with its extrem-
ity cycling around and appearing at the bottom of the figure.

Translation invariance forθ can be implemented by centering the data by subtracting the
image mean, giving rise to the Centered Logpolar transform:
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RiSiTi(x,y) = LogPolar(x-x,y-y)

where  and similarly fory

Unfortunatley, if cycling occurs however (meaning the data extends overπ), averaging
will not find the center of the image. In this case other procedures such as the Fourier
transform which assume  periodicity in the data will provide a better solution.

4.2 Fourier-Melin Transform

In Théorie Analytique de la Chaleur (The Analytical Theory of Heat, 1822) Joseph Fourier
showed that any function could be transformed into a sum of component sin and cos vec-
tors. A Fourier Transform breaks up an image into these constituent sines and cosines.

If a function is given byg(t), then the fourier transformF(g(t)) is:

or equivalently

whereeinωt = cos nωt + i sin nωt ande-inωt = cos nωt - i sin nωt (Euler’s formula)

The second equation writes the first as a vector having real and imaginary part, with the
real part corresponding to the cosine component, and imaginary part corresponding to the
sine component of a particular period. In a two-dimensional image, there will be two fre-
quency dimensions.

Since the real and imaginary parts of the fourier signal correspond to sin and cos, it can be
seen that translating the image spatially, ie.T(g(x),∆) = g(x+∆) causes the fourier trans-
form to advance the cos and sin components by∆, ie.

T(f(g(x)),∆) = an cos(nπ [x+∆] ) + bn sin(nπ [x+∆] ) , 1<n<∞

Right: a) a Fourier transform of a duck. b) an inverse fourier transform with high frequencies sub-
tracted. c) an inverse Fourier transform with low frequencies subtracted. These images were cre-
ated by Kevin Cowtan. Fourier images use darkness to represent amplitude (dark = high, white =
close to zero), and colour (blue to red) to represent phase.
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Since sin and cos are both periodic, both are advanced equally, but the ratio between the
two is preserved. Another way of capturing this “ratio” is to just take the magnitude of the
complex  vectors, which is the total length of the vector at this frequency. The magnitude
is therefore invariant to spatial translation in the image, and so is often used to achieve
translation invariance.

A scale change applied to an image corresponds to multiplying all frequencies by a func-
tion of the scale change:

S(F(x,y),∆a,∆b) =

Therefore, scale can be eliminated by normalising by the first harmonic (which contains

the  term), and then putting the frequencies produced by the fourier transform onto a

log scale, or simply by putting frequencies onto a log scale without the first step. (Cox,
1992). This gives a scale and translation invariant representation of the original image:

SiTi(x,y) =

Rotation can be eliminated by first applying a log-polar transform to the image, which
itself transforms rotation into translation. Fourier magnitude then creates a translation
invariant signal. This complete transform, is called the Circular-Fourier, Radial-Melin, or
the Fourier-Melin transform.

T
i

x( ) F x( )=

1
∆a∆b
-----------------F

x
∆a
------- y

∆b
-------, 

 

1
ab
---------

F x y,( )[ ]
F 0 0,( )[ ]
----------------------------- 

 log

FourierMelin x y,( ) F Polar x y,( )[ ]=



July 7, 1997                                                                                                      Page: 10

Figure 5: Fourier power spectra for template (left) and hand-drawn stimuli
(right). Both images show absolute size of sin and cos components at various fre-
quencies.

4.3 Hu invariants

A moment is a description of some features of a particular distribution, and therefore can
be used to compare one trajectory distribution against another. A moment M(p,q,(x,y) of a
distribution (x,y)  of order p in dimension x and q in dimension y is defined as follows:

Central moments U(p,q,(x,y)) are identical, but each value of x and y has the mean sub-
tracted,

Normalised moments V(p,q,(x,y)) take central moments and then normalised for size by

M p q x y,( ), ,( ) x
p
y

q∑=

U p q x y,( ), ,( ) x x–( ) p
y y–( ) q∑=
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dividing the moment score by the total area of the shape.

Moments have important statistical and physics analogues. The first moment is the mean

E[g], the second central moment is the variance E[(g-g)2], the third central moment is
skew, the fourth central moment is kurtosis. Each of these moments measures particular
aspects of the shape, for instance, variance tells us spread, skew tells us if there is a tail (if
one end of the shape has less area than the other), kurtosis gives us information on the size
of the tail and so on. In physics moments are .

Hu (1962) identified a series of famous shape moments which were invariant to rotation,
scale and translation. There were 10 moments in all, although using normalized moments
fixed three of these to constant values. This leaves us with six moments which are invari-
ant to reflection, and a seventh which changes sign under reflection. They are defined
below:

h1 = V(2,0) + V(0,2)

h2 = [V(2,0) - V(0,2)]2 + 4[V(1,1)]2

h3 = [V(3,0) - 3V(1,2)]2 + [V(0,3) - 3V(2,1)]2

h4 = [V(3,0) + V(1,2)]2 + [V(0,3) - V(2,1)]2

h5 = [V(3,0) - 3V(1,2)] [V(3,0) + V(1,2)] ([V(3,0) + V(1,2)]2 - 3[V(0,3) + V(2,1)]2) +

[3V(2,1) - V(0,3)] [V(0,3)+V(2,1)] (3[V(3,0) + V(1,2)]2 - [V(0,3) + V(2,1)]2)

h6 = [V(2,0) - V(0,2)] ([V(3,0) + V(1,2)]2 - [V(0,3) + V(2,1)]2) + 4V(1,1) [V(3,0) +
V(1,2)] [V(0,3) + V(2,1)]

h7 = [3V(2,1) - V(0,3)] [V(3,0) + V(1,2)] ([V(3,0) + V(1,2)]2 - 3[V(0,3) + V(2,1)]2) +

[3V(1,2) - V(3,0)] [V(0,3) + V(2,1)] (3[V(3,0) + V(1,2)]2 - [V(0,3) + V(2,1)]2)

These variables have a very large dynamic range, and therefore for experiments, a set of
compressing transformations proposed by Masters (1994) were applied to these moments.

2.6 Eigenvector Rotation

Centering and normalising data has traditionally been done by subtracting the mean and

V p q x y,( ), ,( ) U p q x y,( ), ,( )

M 0 0 x y,( ), ,( )
p q 2+ +( )-----------------------------------------------------------------=
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dividing by the norm of the data - as for instance is done in normalized moments.
(although even this procedure is susceptible to problems and may not be accurate for all

problems1). These methods address translation and scale, but do not address rotation. One
strategy to achieve rotation invariance has been to use the principal axis of a shape or tra-
jectory to infer the “standard orientation” of that shape or data, and then rotate the shape
based on its principal axis into this standard orientation for pattern matching. The proce-
dure is as follows.

First the eigenvectors of the stimulus are found. This can be done by performing a singular
value decomposition on the covariance matrix of the data g.

eig(g) = diag(S) where

Cov(g,g) = USVT whereU and V are orthogonal andS is a diagonal
matrix of eigenvalues.

Next, the eigenvector with the maximum eigenvalue, the first column ofU, is taken as the
principal axis, and is rotated -θ degrees into a horizontal position. Since rotation is sym-
metric, this can be done by rotating by the transpose of the rotation matrixθ degrees.

[r,θ] = polar(U1..n,1
T)

This aligns the data such that its direction of maximum spread is along the horizontal of
the coordinate frame being used. Note in this orientation,M(1,1) = 0. Next, if the data is
not skewed in a standard direction - generally to the right - it is flipped across the axis of
the second eigenvector. This can be done by inspecting the third moment of the data, and
if negative, flipping the data across the left-right axis by multiplying by the x values of
data -1.

if M(3,0) < 0,

The result of this process is the original data, rotated about its axis until it is in a standard
orientation with its largest direction of spread/mass on the horizontal, and the direction of
next maximum mass orientated in the left, with its tail pointing to the right. If the candi-
date stimulus to be compared preserves these basic properties of variance and skewness,

1.

x y,( ) R x y θ–, ,( ) x y,( ) θ( )cos θ( )sin–

θ( )sin θ( )cos
⋅= =

x y,( ) x y,( ) 1– 0

0 1
⋅=
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then they will both be orientated into exactly the same position for pattern matching.

Figure 4: Eigenvector rotation method finds the principal axis of a trajectory or shape, and then
rotates the trajectory until that principal axis is horizontal with resspect to the basic coordinate sys-
tem taken. If there is more trajectory mass on the right (calculated by finding the third moment of
the trajectory in this orientation), the trajectory vector is rotated a full 180 degrees again so that the
smaller area component of the image is pointing towards the right.

A problem with this method is that for a target trajectory the ratio of the largest eigenvalue
to the smallest might be very close to 1. This is referred to in the literature asan ill-condi-
tioned problem. In this situation, if the response trajectory deviates just slightly from the
target, the first and second eigenvalues could be swapped, resulting in a completely
orthogonal axis of maximum variance, and so a stimulus may be rotated into a standard
position almost 90 degrees from the stimulus it is being compared against.

This problem was addressed by testing the match between the two stimuli at each of the
three additional 90 degree rotations from the standard position. Unfortunately, even using
this technique, the correlation was quite low - lower in fact, than just normalising the tra-
jectories in their original orientations and calculating a cross-correlation. This poor result
indicates that the act of finding the direction of maximum spread and rotating this into
position itself is not a good method for orientating stimuli in this domain. A reason for this
is that noisy deviations in trajectory, and especially beginning and end transients (entire

2

1

2

1

2

1
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line segments added by the user in finding an initial point, or trailing after an experiment)
significantly distorted the variance of the data, leading to the maximum variance being in
a new direction, however, with the best direction of correlation was still being in the stan-
dard direction. Another factor contributing to this was the fact that stimuli were generally
not rotated by any large degree in this domain.

Because large amounts of noise was common in this application, this method suffered
greatly in terms of inappropriate rotation and correspondingly poor matches. Other meth-
ods such as fourier-melin degrade only in proportion to the noise in the figure, and there-
fore were better suited to this particular problem.

2.5 Canonical Analysis

Canonical correlation is a multidimensional extension of the ordinary 1-dimensional vec-
tor correlation. Canonical correlation can be defined in a number of interesting ways. The
canonical correlation between two multi-dimensional vectorsf andg, is that it is the maxi-
mum ordinary 1 dimensional correlation between a linear combination off and a linear
combination ofg.

fcomb = a1f1 + a2f2  + ... + ad

gcomb = b1g1 + b2g2  + ... + bd

CanCorr = max (a1,a2,..,ad),(b1,b2,...,bd) Corr(fcomb,gcomb)

where

The maximum correlation between the two linear combinations is said to be the first corre-
late, and this can be used as the “correlation”. It is also possible to then subtract outfcom-

bandgcomb from thef andg data, and then to run the canonical procedure again (finding
anotherfcomb andgcomb which maximise the standard correlation). If there ared dimen-
sions in the data, then there ared such correlations.

Algebraically Canonical Correlation can also be defined as

A = Cov(f,f)-1/2 Cov(f,g) Cov(g,g)-1/2

Corr fcomb gcomb,( )
fcomb f– comb 

  gcomb g–
comb

( )⋅

fcomb f– comb gcomb g–
comb

⋅
----------------------------------------------------------------------------------=

(1)
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c = eig(A)

whereCov(f,f)-1/2 refers to the inverse of the matrix square root of the covariance matrix
of f with f, andCov is defined as:

(Eric Bohlman and Roger Laffose, 1997; Bernstein, 1988). The equation forA is a natural
extension of the ordinary formula for correlation between 1 dimension vectors, which is
essentially the covariance of each vector divided by the norm of that covariance.c is a
positive vector of eigenvalues between 0 and 1.

Figure 8: The Canonical correlation of two vectorsf andg is the max-
imum correlation between a projection fromf onto one coordinate axes
(a line through the space), and a similar projection fromg. There ared
axes, and so there ared possible correlations. The eigenvalues for this
example are .9968 (eigenvector [-.9091 .4166]) and .9831 (eigenvector
[-.4166 -.9091]), which show a strong relationship in both principal
axes.

The first procedure for calculating canonical correlation is reminicent of the procedure
used for calculating principle components. In fact, canonical correlation is a multidimen-
sional extension of principal components. The Principal components of a vectorf are the
eigenvalues of the variance matrix betweenf andf, that is, how each dimension of the vec-
tor varies with every other dimension of itself. Canonical correlates on the other hand, are
the eigenvalues of the covariance matrix betweenf and some other vectorg normalised by
the size of the vector. This can be demonstrated as follows:

Principal components are defined as the eigenvalues of the Covariance matrix off with
itself. Therefore,PC(f) = eig(Cov(f,f)). From the definition of Canonical Correlation, we

(2)

Cov f g,( ) 1
N
---- f f–( ) g g–( )⋅

T
=
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now subsitutef=f  andg=f into the canonical correlation equation:

CanCorr(f,f) = eig(A)

where

A = Cov(f,f)-1/2 Cov(f,f) Cov(f,f)-1/2

Therefore, the canonical auto-correlation withf with f is precisely the principal compo-
nents off but with the small change in that it is normed by the magnitude of the covariance
matrix.

The main usefulness of this procedure is that it gives the algebraic correlation between  a
pair of multidimensional target and response trajectories. This correlation also happens to
be invariant to rotation, translation, and scale. This is proved below.

Theorem: Canonical Correlation is invariant to rotation, scale and translation.

Proof of rotation invariance
Let R be the rotation matrix defined in (4).

=  distributing transpose

=  inverse of the square root
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=

=

=

Because eigenvalues are unchanged under rotation,eig[A(f,fR)]=eig[A(f,f)] the canonical
correlation between two rotated stimuli are identical regardless of rotation.

Proof of scale invariance

Let g be equal tof under a scale transformation,g = Sf. Then

(from 1)

=

= A(f,f)

SinceA(f,f) = A(f,Sf),the eigenvalues ofA(f,Sf)are unchanged.

Proof of translation invariance

Since the mean is subtracted from bothf and f (in the calculation ofCov), thenCan-
Corr(f,g) must be invariant to translation.

Similarly it can also be shown that Canonical Correlation is invariant to reflection, but not
invariant to shear.
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2.6 Casesant fourier

Several variants have been suggested on the basic Fourier-Melin procedure implemented
here. A good survey can be found in Wood (1996). One such procedure is a method intro-
duced by Casasent and Psaltis (1976) as an alternative to the standard Fourier-Melin pro-
cedure. The primary difference is that instead of using moments to center the image, (ie.
just subtracting the image mean), a Fourier power spectrum is calculated (which is transla-
tion invariant). The algorithm as follows: (1) calculate fourier transform of image and take
magnitude. This takes care of translation in the image. (2) perform log-polar transform on
the power spectra. This converts rotation to translation and nullifies scaling effects. (3).
Perform a second fourier transform and take magnitude. This nullifies rotation in the
image.

2.7 Aspect ratio

Aspect ratio gives the ratio between the maximum and minimum eigenvalues, and so is
invariant to rotation, translation, and scale in the data. However, this provides only very
general information about a signal. This method is included in this paper only for compar-
ison, and because it can assist in the combining stage discussed later.

2.8 Other methods

Perantonis and Lisboa (1992) have also introduced theZernike moment, which multiplies
the image by Zernike polynomials which are expressed in polar coordinates. This provides
rotation invariance. Some authors have also presented interesting theories on how affine
transformation invariance could be achieved. Assuming the general form of the invariant
function is known, it becomes a matter of finding parameters which minimise in a least
squares sense, the invariance function. Further details can be found in Flusser and Suk
(1993) and Rothe et. al. (1994). A comprehensive survey of invariance methods can be
found in

3.0 Matching

After transforming the trajectory to make it invariant to rotation, translation and scaling, a
match needs to be calculated between the target and response trajectories. This matching
was done differently depending on the method used. Hu invariants were matched by cal-
culating the mean squared difference between the target and resposne. Canonical correla-
tion was calculated a match implicitly. All of the other methods used a novel application
of cross-correlation typically applied in image processing. This is described in this sec-
tion.

Let Imagef(i,j) = 1, if (i,j) ∈ f
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=0, otherwise

This is a function similar to an image function in image processing, which gives a 1 in
every location where there is a pixel, and a 0 everywhere else. We will use this function to
compute a grid-wise cross-correlation between two trajectories.

where  and similarly forug.

.

Figure 2: Surface plot of the convolved template (on the left) and image (on the right). Smoothing
is necessary to ensure a good range of matches.

Cross-correlation was performed in a number of stages (figure 5). Vectors were first pro-
jected onto anIM×IM size 2D mesh. (for 3D trajectories, this would be a discretized vol-
ume). This was done by first calculating the smallest bounding rectangle which would
enclose a trajectoryf, by subtracting the minimumx andy value from the maximum value
in f.

range(f) = max(f)-min(f)

CrossCorr f g,( )
uf i j,( ) ug i j,( )⋅

i j,
∑

uf i j,( ) 2
ug i j,( ) 2

i j,
∑⋅

i j,
∑

----------------------------------------------------------------=

uf i j,( ) Imagef i j,( ) 1
n
--- Imagef i j,( )

i j,
∑–=
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Next, the trajectory vectors were normalized to a range of[0..IM] by dividing all(x,y)
entries inf by range(f), to normalize their value to the range 0..1, and then multiplying by
IM. Finally, if there was a mismatch between the size ofrange(f) andrange(g), the smaller
was rescaled and padded with zeros, by dividing byrange(larger)/range(smaller). The
trajectories were then converted into a grid representation by applying theImagef func-
tion, giving rise to a discretized, mesh version of the original trajectory.

, if  range(f)<range(g)and

, otherwise

The final step was to convolve the grid representation with a gaussian kernelG of widthw,
heightgsize, centered at 0, to give a blurred and spread out version of the polygonal path,
which allowed spreading out into this mesh. This was necessary because lines were only
one grid-size wide, and so spreading improves the range of matches and the information
on trajectories which are close but not identical to the original. The convolved mesh repre-
sentations of target and response paths were then matched by the normalized cross-corre-
lation algorithm. Cross correlation was used for calculating Log-Polar with centering,
Fourier-Melin, eigenvector rotation, and normalised cartesian correspondances.

c = CrossCorr(Imagef(i,j)*G, Imageg(i,j)*G)where i,j ∈ [1..IM] and

fnorm
f min f( )–( )
range f( )

--------------------------------- IM⋅=

fnorm fnorm
range g( )
range f( )
-------------------------⋅=

gnorm gnorm
range f( )
range g( )
-------------------------⋅=

G j i,( ) 1

w 2π⋅
------------------- e

j gsize–( ) 2
i gsize–( ) 2

+ 
  2

–

2 w
2⋅( )

-----------------------------------------------------------------------------------

⋅=
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Figure 1: Stages in calculating an image cross correlation. From left to right, top, (a) the original
image is read in and sampled at low resolution, giving this discrete dot pattern. (b) the image is fur-
ther decimated by x10 to create a low resolution representation of the image. (c) a Gaussian kernel
used for smoothing (d) The low-resolution image after convolution, (e) a surface plot of the con-
volved image. (f) contour plot of the same image.

Although the mesh-based spreading step may seem like a crude form of getting informa-
tion on trajectory vector correspondances, in practice this was found to be superior to
other forms of matching experimented with. One alternative was was to find the minimum
squared distance between each point in the target and points in the response. A problem
with this method of matching was that it did not register “negative” matches, ie. features
of a trajectory which appeared in the target and were not replicated in the response were
not penalised for not being present in the way that cross-correlation penalised them.

4.0 Empirical Results
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The ultimate validation for the scoring system was for its scores to be checked against
human scores on aparticular test set. The pattern analysis system was used to analyse over
600 template response trajectories, and assign scores to each. Following this, human sub-
jects were then asked to rate the same 600 by viewing the trajectories. N=3 subjects were
used to give ratings.

Next a correlation was run between the match scores the program produced, and the mean
human subject scores (p). These results are shown in table 1.

The correlation between human scores themselves was only 0.5. This was a very low cor-
relation, and meant that human assessments of similarity were highly variable. It further
meant that if a machine was to be comparable to human performance, it was unlikely any
procedure could attain a score much higher than 0.5.

4.1 Results for Standard Methods

Fourier-Melin was the most successful technique of the eight, with Hu invariants the
worst. In addition to the methods mentioned in Section 2, a domain specific match method
was also introduced for final matching, which looked for features in the image and
matched on that basis (“Feature-based”). Interestingly, this method perfomed well below
other general methods.

Invariance method Match method p SSE

Fourier-Melin Normalized Cross-correlation .4585 77.17

Cartesian centered and scaled Normalized Cross-correlation .4511 80.58

Smoothed Polygonal boundary Vector Correlation .4258 76.68

Feature-based Vector Correlation .3947 80.72

Polygonal boundary Vector Correlation .3840 80.01

Canonical Correlation Canonical Correlation .3194 115.60

Log-polar moment centering Normalized Cross-correlation .2427 109.47

Casesant fourier Normalized Cross-correlation .1509 136.64

Cartesian trajectory vector Normalized Cross-correlation 0.4207 71.06

4-way Eigenvector rotation Normalized Cross-correlation 0.3580 91.71

Aspect ratio Squared difference 0.1688 137.08

Eigenvector rotation Normalized Cross-correlation 0.1920 135.53
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As discussed in earlier sections, eigenvector rotation is not well suited to this application,

Hu invariants Squared difference 0.0702 151.81

Invariance method Match method p SSE

Normalised xy Cross correlation 0.4761 3665

Centered xy Cross correlation 0.4404 3668

Smoothed polygonal boundary Vector correlation 0.3650 3687

Fourier-melin Cross correlation 0.3647 3725

4-way Eigenvector rotation Cross correlation 0.3580 3666

Polygonal boundary Vector correlation 0.3486 3690

Canonical Correlation 0.3402 3633

Feature correlation Vector correlation 0.3072 3663

Fourier polygonal Vector correlation 0.2998 3660

Log-polar centered Cross correlation 0.2738 3678

Eigenvector rotation Cross correlation 0.1920 3681

Aspect ratio Sum squared difference 0.1688 8542

Casesant fourier Cross correlation 0.1509 3679

Hu moments Sum squared difference 0.0796 15548

Invariance method Match method p SSE

Canonical Correlation 0.51 14634

Feature correlation Vector correlation 0.48 14729

Fourier-Melin Cross correlation 0.46 14981

Normalized xy Cross correlation 0.41 14746

Polygonal boundary Vector correlation 0.41 14851

Smoothed polygonal boundary Vector correlation 0.40 14835
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 because of the potential for large rotations under small amounts of noise. The poor perfor-
mance of Hu invariants was more of a surprise however. This also deviates from results by
Cohen (1994), where moments were used to identify 3D parts for a Computer Aided
Design application. Cohen showed that in a correlation matrix, four major groups of
objects (bolts, washers, ) tended to have similar moments (grouped together by their corre-
lation), and therefore, similarity seemed to be preserved. He also noted, however, that
some salient aspects of shapes, for instance, the difference between a round-headed and
square hexagonal bolt tended to be overlooked by moment-based methods, since these
were much finer features of the object. A reason Hu invariants may have given poor per-
formance in this application, was because there were a large number of different trajecto-
ries, which had an overall similar form. Fine features of the trajectories which were
essential for discrimination, were not picked up. This suggests that higher-order moments
might have been more successful.

4.2 Invariance?

Although many of the invariance methods had strong theoretical motivations, in practice
their performance was certainly less than ideal. Figure 4,5,6 shows various methods com-
pared on invariant benchmark data. It can be clearly seen that far from being invariant, the
scores given by transforms certainly do change with rotations. The reason for this failure
to implement invariance depends on the specific method in question. Centered Log-polar
is susceptable to a cycling problem which makes estimation of the center and hence cor-
rect centering and alignment for matching, impossible. Eigenvector routines suffer from
problems with noise which can cause spurious rotations between target and response. All
methods which rely on estimation of the center, and normalization of the size of the image
(such as Hu invariants, Cartesian normalization, Log-polar), are susceptable to problems.
Normalization is susceptible to outliers. If a data cloud has its main density in a tiny
region, and then has a single noisy point several standard deviations away from this dense
region, then the entire distribution is normalized based on the “size” of the outlying point.
This has effect of scaling the dense region to a tiny fraction of the whole. This problem is

Fourier polygonal boundary Vector correlation 0.33 14713

centered xy Cross correlation 0.32 14761

4-way Eigenvector rotation Cross correlation 0.30 14747

Eigenvector rotation Cross correlation 0.25 14777

Casesant fourier Cross correlation 0.24 14809

Hu invariants sum of squared differences 0.22 61131

Log-polar centered Cross correlation 0.18 14807

Aspect ratio sum of squared differences 0.05 18127
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commonly experienced in image processing where normalization of image brightness can
be undone by the presence of a few bright spots in the image which cause the main part of
the image to appear dark. Centering by finding the mean can also provide a poor center for
a datacloud if that datacloud is skewed. In this case, the true origin of rotation of the data
may not be given by the mean.

Finally, The Fourier-Melin procedure, although one of the most successful transforms,
may have suffered from boundary effects arising because the trajectory signal is not peri-
odic. The influence of these many confounds is demonstrated clearly by the demonstration
that all of these methods are poor at estimating invariance. From an estimation point of
view, the differences in both degree of invariance, transform apparatus, scores, correlation
of scores with human scores, also is suggestive that each procedure has a differentbias
associated with it.

4.3 Bias in Estimating Invariance

Bias just means “difference in accuracy between some estimator and a target distribution”,
and is normally expressed as the (E(Ti)-E(Tj))2. The assertion that two transforms have
different biases can be proved by showing that an order relation over neighbouring images
in Ti is not preserved inTj. Something of the degree of distortion can be inferred by show-
ing that two transforms are not homotopic ie. smoothly deformable, with each other.

Theorem 1: Neighbouring stimulus violation: An order relation onTi may be violated inTj

if the difference between the two grows according to a non-linear function, or a linear
function of the formTi-Tj=a(Ti)+c, c>0.

Proof

If Ti-Tj=a(Ti)+c ~ 0, or Ti-Tj=a(Tj)+c ~ 0 wherec>0 ; wherea is chosen to minimize the
equation,  (ie.Ti is a scalar multiple ofTj) then since < is invariant to multiplication (ie.
x<y ↔ lx<ly) then any order relation between imagesTi(g1),Ti(g2),...,Ti(gn) must also be
preserved inTj(g1),Tj(g2),...,Tj(gn). Therefore, if two transforms are scalar multiples, then
they are guaranteed to have no effect on the order relation.

In the other case, (for instance, ifTi-Tj=a(Ti)+c >> 0)  the order relation,<  cannot be
guaranteed to be preserved. Therefore, “neighbouring trajectories” underTi may not be
neighbouring inTj, and so the similarity space is not preserved between the two trans-
forms.

Corollary: Invariance methods which are not linear with respect to each other. Canonical
analysis, Fourier-Melin, and are all functions which are not linear functions of each other,
and therefore can be expected to have different order relations on stimuli.
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Definition: Homotopy between two transforms

A mappingfi:X→Y is homotopic if for eachX andY they may be joined by a smoothly

evolving family of mapsft:X→Y, and and if the inverse family of maps,f-1:Y→X is also
defined (diffeomorphism). In other words, on the unit interval [0,1] in R, we sayX andY
are homotopic if there exists a smooth map f:X×I → Y such thatf(X,0) = X andf(X,1) = Y.

Lemma 3: Transforms which uselog, and those which do not are non-homotopic. Trans-
forms which use|.| and those which do not are non-homotopic with each other.

Proof

|.| is not invertable, and therefore, violates the inverse property of homotopy. With regard

to log, , therefore, this also breaks the space.

Corollary: Invariance methods which are not homotopic with each other

Fourier-Melin, Log-Polar, Casesant use log, and therefore are non-homotopic with the
other transforms outlined in this paper. Fourier-Melin and Casesant both use magnitude
and therefore are non-homotopic with the other transforms discussed in this paper.

4.4 Empirical evidence of bias: Distortion results

Further evidence of bias can be found by analysing the scoring performance of the proce-
dures on a set of controlled stimuli. A group of 10 random trajectories were chosen as pro-
totypes, and the following algorithm was used to add bivariate gaussian noise to the
stimuli in increasingly larger amounts. This noise affected the angles and lengths of the
prototype trajectories.

algorithm

This provided a family of trajectories with increasing amounts of distortion from the orig-
inal prototype. Next, the scoring system calculated a score for the similarity between the
prototype and the family of distorted trajectories based on that original prototype. There
were 10 levels of randomness, leading to very high levels of distortion. A series of dis-
torted trajectories are provided in figure 5.

A side-effect of adding bivariate random noise was that each time noise was added, it
increased the overall length of the trajectory. At the highest level of randomness, the tra-
jectory had increased from 200 pixels in size, to over 2000. It was important to only have

x x( )log
t ∞→
lim≠

t ∞→
lim
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stimuli influenced by randomness, to get an idea of how matching degraded under ran-
domness, and so how the similarity space was shaped for different methods.Size increases
were controlled for by normalizing the trajectory by its size
f/max(f)

Scores for increasingly degraded stimuli are shown in figures 6 and 7. It can be shown that
Hu invariants ... do not degrade smoothly on these stimuili, where-as fourier melin does....
It will be shown in the final section that combined methods such as stacking and averaging
significantly eliminate this problem, giving substantially smoother similarity comparisons.

6.0 Combining Estimators

This above results  show that many of the transforms listed in this paper are biased relative
to each other. This still leaves the problem of maximising the  accuracy of the similarity
estimation. One simple approach to maximise estimation accuracy is simply to choose the
best performing invariance method. However, this ignores a lot of information which is
provided implicitly in the other methods’ scores. A second approach is to take some aver-
age of the scores produced by each of the estimators.

The latter approach has recently been substantiated in some analytical work by Tumer and
Ghosh (1993). Under assumptions that the variance of each of the estimators was roughly
the same, these authors found that the error of the boundary region,Eadd between the esti-
mated distribution and the true distribution, for averaged classifiers is equal to

whereN is the number of estimators,Eadd is the constant quantifying the base error for
each of the estimators, andp is the correlation among the estimators. This indicates that
designers should look for as many good uncorrelated estimators as possible. Interestingly,
it is impossible to just continue to find good uncorrelated estimators. Each estimator
which is applied to the data can be thought of as shattering the data space in some dimen-
sion. There are only a finite number of possible ways to shatter the data, and good experts
will comprise an even smaller set. As a result, its likely to see a phenomenon where
increasing numbers of colinear experts are found, increasing the top part of the equation
and decreasing the total improvement.

Rescaling for combining

A problem with combining raw scores from estimators, was the fact that estimators tended
to have a different range of numbers in which scores typically fell. For instance, low
scores for canonical correlation tended to be rare, since it almost always found some axis

Eadd
ave 1 p N 1–( )+

N
--------------------------------Eadd=
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through the data which gave a reasonably good correlation. Canonical Correlation tended
to give scores in the range 0.7..1.0. Log-polar tended to give scores in the range 0 to 0.7.
Sum of squares matches gave numbers in the range from 0 to some large number. Simply
averaging these raw scores, therefore, would have been meaningless. Therefore, prior to
combining, all estimator scores were normalized to Z-values which gave them unit vari-
ance, and centered them around 0. (This also put different dimensions on the same scale,
and so made the least squares optimization problem used in stacking more soluable)

4.2 Combining estimators by averaging

Averaging a group of estimators gives an ensemble classifier

:

where there are a total ofN estimatorspi. A problem with averaging is the fact that many
of the estimators may be colinear with each other. In this case, the average found can
become dominated by one estimator, and the benefits of using multiple estimators can be
lost. One way to address this is to use a training set to find a set of weights which can be
applied to each estimator in the average to minimize the error.

4.3 Combining estimators by stacking

Stacking was proposed by Wolpert (1992) as a method for improving the performance of a
single estimator, by dividing its training set into different partitions and then combining
the results of each. However, it quickly became apparent that stacking could be applied to
any set of estimators, and indeed works best when the estimators are quite different from
each other.

Where-as averaging gives equal weight to each estimator, Stacking can increase or
decrease preference on particular experts, depending upon their performance on a training
set. Stacking does this by essentially running a regression to find a set of coefficients
which optimally map the set of estimator values (x,p(x)), to the a set of known correct
training data (x,f(x)). This is normally a linear regression, and although high-order regres-
sions are possible, this is not used in the literature, because high-order models increase the
danger of overfitting based on a small training set. The result of this technique is that a set
of coefficients are found which weigh each estimator, and are then used there-after to
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weigh their advice. Stacking is defined as:

Briemann (1992) suggested a way of improving the basic stacking method. Breimann
observed that standard stacking seemed to overshoot and undershoot the range of training
data y, by a considerable amount, giving wildly off results. Instead, Bremann proposed
constraining the regression coefficients to the range [0..1] to force the combined estimator
to stay within the maximum and minimum range indicated by the training data. Con-
strained stacking is defined as:

where

Table 2: Combination methods outperformed all standard
methods. Results reported are for test set only.

The test set results from combination methods are shown in table 2. All methods were
very effective, with constrained regression and averaging performing particularly well.
Constrained Stacking is extremely robust, as even colinear, redundant, or negatively cor-
related experts - which would be factored into averaging - simply have their weights set to
zero, and other experts will take up proportionately greater responsibility. As a conse-
quence, constrained stacking provides a simple, robust, and effective method for boosting
estimation.

Combination method p SSE

Constrained stacking .6062 50.06

Average .6052 51.15

Stacking .5374 55.32

Best classifier .4585 77.17

Worst classifier .2427 109.47
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One of the objectives in combining estimators was to eliminate particular biases, and get
closer to an overall score for similarity. In addition to showing higher correlations with
human ratings, performance on distortion data, which was a probe of how smoothly rat-
ings degraded with randomly degrading stimuli, show that the data clearly degrade on a
very smoothly sloping logarithmic curve.. This contrasts with results for individual esti-
mators alone, which showed more variable results. As a result, it should be inferred that
the bias problem has been reduced.

** either this or: Distortion results section showing that stacking and average give
smoothly decaying similarity results (which was the intent)

Figure 10: In this diagram human subject scores have been sorted into values from smallest to larg-
est. These form the yellow line in the upper part of each of these graphs. The blue irregular line is
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the performance of a particular expert or combination. If the expert was perfect, it would perfectly
follow the yellow line. The lower part of each figure shows the squared error on each of these
sorted test cases. Smaller bar graphs mean better overall performance. The graphs are from top left
to bottom right, (a) worst expert, (b) average of experts, (c) basic stacking, (d) constrained stacking.
All cases shown here are from the test set.

7.0 Conclusion

This paper has demonstrated that combining methods are extremely effective on difficult
pattern recognition problems. In fact, the situation is almost win-win. Unlike averaging,
and assuming a representative training set, stacking can only improve performance, and
even redundant, colinear or malicious experts can be taken out of the data by the proce-
dure. After running a match, and additional methods can be given to the procedure to try
to improve the performance.

References

Casasent, D. and Psaltis, D. (1976), Position, Rotation and Scale-invariant Optimacl Cor-
relation,Applied Optics, Vol. 15, pp. 1795-1799.

Cowan, K. (1996),Kevin Cowtan’s Book of Fourier, http://www.yorvic.york.ac.uk/~cowtan/fou-
rier/fourier.html)

Cox, G. (1995), Template Matching and Measures of Match in Image Processing, Depart-
ment of Electrical Engineering, University of Cape Town.

Cox, G. and de Jager, G. (1993), Invariance in Template Matching,Proceedings of the
Fourth South Affrican Workshop on Patter Recognition, pp. 152-6. http://
www.dip.ee.uct.ac.za/imageproc/pattern/

Masters, T. (1994),

Mokhtarian, F. and Mackworth, A. (1986), Scale-based description and recognition of pla-
nar curves and two-dimensional shapes,IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-8, No. 1. pp. 34-43.

Perantonis, S. and Lisboa, P. (1992), Translation, rotation and scale invariant pattern rec-
ognition by high-order neural networks and moment classifiers,IEEE Transactions on
Neural Networks, Vol. 3, pp. 241-251.

Rothe, I., Voss, K., et. al. (1994), A General Method to Determine Invariants, Fakultat fur
Mathematik and Informatik, Friedrich-Schiller-Universitat Jena, Germany. http://
www.sicc.co.kr/~yalkongs/archives/


