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ABSTRACT
This paper describes a new Bid Shading algorithm, called "Win

Rate", that is currently used in a large online advertising company.

The method uses a modified logistic regression to predict the profit

from each possible shaded bid price. The function form allows

fast maximization at run-time, a key requirement for Real-Time

Bidding systems. We report production results from this method

along with several other algorithms. We find that bid shading, in

general, can deliver significant value to advertisers, reducing price

per impression to about 55% of the unshaded cost. Further, the

particular approach described in this paper captures 7% more profit

for advertisers, than do benchmark methods of just bidding the

most probable winning price. We also report 4.3% higher surplus

than an industry Sell-Side Platform shading service. We attribute

the gains above as being mainly due to the explicit maximization

of the surplus function, and note that other algorithms can take

advantage of this same approach.
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• Applied computing → Online auctions; • Information
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1 INTRODUCTION
Online Advertising auctions have been dominated by Second Priced

Auctions since their early implementations in the 1990s. Google

famously used Second Price Auctions for its Adwords and Adsense

auctions, and, in 2017, generated 90% of its revenue from Second

Price Auctions [17]. However, there was a dramatic shift in online
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advertising between 2018 and 2019. As of 2020, almost all major dis-

play ad auctions have switched from Second to First Price Auctions

[18, 19]. Several factors conspired to drive the industry towards the

adoption of FPA, including the widespread growth of header bid-

ding with its incompatibility with SPAs [23], increased demand for

transparency and accountability [12, 16, 28, 31], and yield concerns

[5],[27],[6].

Unfortunately for advertisers, First Price Auctions leave private

value bidders susceptible to over-paying. For instance, if the bidder’s

private value of an impression was $10.00, and the winner knew

the second placed bidder’s price was just $1.00, they could bid just

$1.01 and effectively collect a $8.99 profit. If they instead bid their

private value, they would be charged the entirety of the $10.00 and

they would have $0 profit!

The practice of strategically decreasing bid price below the

buyer’s private value is known as bid shading. Bid shading has

been observed in a variety of real world auctions including FCC

Spectrum [11], US Oil Deposits [10], Cattle auctions [13], US Trea-

sury auctions [22] and others. Despite its widespread use, there has

been little work done on methods to systematically exploit shading,

particularly when data is available to make it possible to predict

auction clearing prices.

2 THE BID SHADING PROBLEM
Given impression 𝑖 , and a valuation for the impression 𝑉𝑖 which

represents how much the advertiser expects to capture from the

impression, how much should the advertiser discount their valua-

tion? Assuming that the valuation 𝑉𝑖 is an accurate representation

of the dollar value that the advertiser expects to obtain, and the bid

𝑏𝑖 = 𝑔𝑖𝑉𝑖 is also in real dollars, the advertiser’s financial gain or

surplus is equal to:

bid surplus =

𝑁∑
𝑖=1

(𝑉𝑖 − 𝑔𝑖𝑉𝑖 )I(𝑔𝑖𝑉𝑖 ), (1)

where 𝑔𝑖 is the shading factor to apply to the bidder’s private value

𝑉𝑖 , ˆ𝑏𝑖 is the auction price needed to win, and I(𝑏𝑖 ) = 1 , if 𝑏𝑖 ≥
ˆ𝑏𝑖 , and 0 otherwise. The task is to find a shading factor 𝑔𝑖 ∈ (0..1)
that maximizes the surplus to the advertiser.

3 PREVIOUS WORK
3.1 Bid Shading Theory
Bid shading is a common tactic in repeated First Price Auctions.

[35] finds robust evidence of shading in Austrian livestock auctions

and [13] reported shading in a Texas cattle market. [22] find the

practice in auctions for US Treasury notes.

Auctions generally need to be repeated and predictable for bid

shading to be practically feasible, but under these conditions, it

often occurs organically. Pownall and Wolk (2013) showed that bid
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shading for repeated internet auction prices increased over time; by

about 26% after 10 iterations [26]. When there are enough repeated

games bidders can even develop collusive shading strategies where

bidders actively coordinate to have low bids [25] [21].

Although behavior varies from auction to auction, several studies

have shown that the magnitude of shading tends to increase with

the average price on the auction [11] [9] [22]. This is likely to occur

because of the more substantial losses involved on higher priced

auctions, if shading isn’t sufficient. This result suggests that using

a measure of the expense of the auction is valuable when trying to

estimate the shading factor - a finding we revisit later in Section 6.

In situations where the supply is plentiful, and demand limited,

buyers can shade deeper. In looking at this phenomemon in the US

Treasury Market, Hortacsu et. al. (2017) find that large institutional

buyers on average shade more aggressively than small indirect

buyers [22] . This seems to be because these large buyers effectively

control a large percentage of bidders, and so it is almost like they

are able to "coordinate" the buying of multiple buyers. They can

therefore drive the bid prices for a large percentage of bidders down,

whilst still meeting their goals.

3.2 Previous Algorithms
In 2018 and 2019, Rubicon [4], [27], AppNexus [5] and Google [30]

[32] [19] [20] all released Sell-Side bid shading services. Leading up

to this, there had been reports of dramatically lower ROI from the

new First Price Auctions [23],[6]. Never-the-less, this is a surprising

move as Sell-Side Platforms are potentially decreasing their yield,

and they clearly have a different incentive from buyers. The sell-side

algorithms seem to reflect this incentive difference. The descriptions

of these services suggest that they try to keep bid prices high

enough to maintain a set win-rate, but preventing the bid price

from becoming too extreme; which might risk an advertiser to halt

their bidding due to poor Return on Investment. Rubicon released

data suggesting that their service decreases First Price CPMs by

a modest 5% over 4 months [27]. AppNexus reported that prices

under their service were 25% lower over 100 days [5]. We tried

one of the services, and recorded the shading distribution in Figure

3. Most of the bid shades were about 90%, which is conservative

for our problem. Further analysis on Sell-Side "Bid Shaders" are in

Section 7.

On the Demand Side, a variety of algorithms have been explored,

although generally not exactly for bid shading applications. [34]

developed a "censored winning bid probability estimator". They ob-

served that when a bidder submitted a bid and lost, the information

gained is that the winning price is somewhere above the submitted

price; and when a bidder submits a bid and wins, the minimum bid

to win is at a price somewhere below their submitted bid. Using

these two cases, the authors developed a Maximum Likelihood pro-

cedure to estimate the probability of the winning bid being any of

the bid prices. This created a distribution of the probable winning

bids, with the most likely winning bid price being used for shading.

[33] extend their work to using a neural network to estimate the

parameters of the win probability distribution.

[8] used Linear Regression to predict the minimum winning bid

price
ˆ𝑏 using features in the request. The predicted clearing price

was then used as the shaded bid price.

The approaches described above [34],[33],[8] all focus on predict-

ing the probable winning bid price. However, the surplus maximum

is very different from the minimum bid to win. An accurate (unbi-

ased, symmetric noise) win probability estimator will be below the

winning bid price about 50% of the time - this means that 50% of

the surplus won’t be captured by design. If the change in new im-

pressions captured at a higher bid price, over-weights the marginal

decrease in profitability per impression, the optimum for surplus

can be higher than the most probable bid.

Unpublished work by [24] is one of the few that we know of to

attempt to explicitly maximize the surplus function. These authors

estimate shading factors for a set of fixed segments based on three

bid samples taken in real-time to estimate the local surplus land-

scape. However the approach has many drawbacks: The segments

have to be predetermined and finding a suitable segment defini-

tion requires substantial analysis. The information across segments

is not shared, which is a problem for segments that do not have

enough traffic. Further, the set of possible segments quickly explode

as the number of variables used to define them increases. The ap-

proach taken in this paper uses a model to estimate the surplus

function, and so a very large number of features can be used, and

model induction is also automated, easy to maintain, and improve.

In order to compare the method we used to prior work, we have

included an implementation of the Linear Regression algorithm

from [8], the Distribution Estimator algorithm from [34], and the

Segment-based Surplus maximizer [24] in the benchmarks which

we use to analyze algorithm performance in Section 7.

4 CANONICAL ALGORITHM
Given a bid request for first-price auction, let 𝑥1, 𝑥2, . . . , 𝑥𝑘 be the

set of publisher and user attributes that we will use to find the

best bid price 𝑏∗ < 𝑉 to submit for the first-price auction. Let

ˆ𝑏 be the highest bid price from other competing bidders, which

value is unknown. Note that
ˆ𝑏 depends on both attributes 𝑥𝑖s which

represent the item that is being auctioned, and external competing

bidder behavior.
ˆ𝑏 follows an unknown distribution D

ˆ𝑏 |𝑥1,𝑥2,...,𝑥𝑘
with cumulative probability distribution cdf

ˆ𝑏 |𝑥1,𝑥2,...,𝑥𝑘 . When the

context is clear, we use D
ˆ𝑏
and cdf

ˆ𝑏
for simplicity.

If the distribution D
ˆ𝑏
is known, we can calculate the optimal

bid price 𝑏∗ directly as follows. Let I(𝑏 > ˆ𝑏) be 1 if 𝑏 > ˆ𝑏 and 0

otherwise, which indicates if the submitted price 𝑏 wins the auction.

Then the surplus when the submitted price is 𝑏 is

𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = (𝑉 − 𝑏)I(𝑏 > ˆ𝑏) =
{
𝑉 − 𝑏, if 𝑏 > ˆ𝑏,

0, otherwise.
(2)

The optimal bid price can be calculated as the price that maximizes

the expected surplus

𝑏∗ = argmax

𝑏>0

E[𝑠𝑢𝑟𝑝𝑙𝑢𝑠]

= argmax

𝑏>0

E
[
(𝑉 − 𝑏)I(𝑏 > ˆ𝑏)

]
= argmax

𝑏>0

(𝑉 − 𝑏) cdf
ˆ𝑏
(𝑏). (3)
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Figure 1: Top: Actual PDF for ˆ𝑏 (left) versus estimate (right);
middle: CDF actual versus estimate; bottom: Surplus distri-
bution actual versus estimate.

For simple forms of 𝐹 , the optimization problem (3) can be solved an-

alytically. Suppose
ˆ𝑏 distributes uniformly over the interval [𝐵0, 𝐵1],

where 0 ≤ 𝐵0 < 𝐵1. This produces a cdf ˆ𝑏 (𝑏) that is piece-wize lin-
ear, with a flat region of 0.0 from 0..𝐵0, a constant slope from 𝐵0 ..𝐵1,

and another flat region of 1.0 above 𝐵1. The bid price 𝑏∗ that maxi-

mizes surplus can be calculated as below

E[𝑠𝑢𝑟𝑝𝑙𝑢𝑠] = (𝑉 − 𝑏) cdf
ˆ𝑏
(𝑏)

=


0, if 𝑏 < 𝐵0,

(𝑉 − 𝑏) (𝑏 − 𝐵0)/(𝐵1 − 𝐵0), if 𝐵0 ≤ 𝑏 ≤ 𝐵1,

𝑉 − 𝑏, if 𝑏 > 𝐵1 .

maxE[𝑠𝑢𝑟𝑝𝑙𝑢𝑠] =
{ (𝑉−𝐵0)2
4(𝐵1−𝐵0) at 𝑏

∗ = 𝑉−𝐵0

2
, if 𝑉 ≤ 2𝐵1 − 𝐵0,

𝑉 − 𝐵1 at 𝑏∗ = 𝐵1, if 𝑉 > 2𝐵1 − 𝐵0 .

However, in practice, we rarely see such simple form of distri-

butions. Figure 1 shows the empirical PDF of
ˆ𝑏 for an example ad,

including the derived surplus distribution. Our approach breaks

into two steps:

(1) Estimate the distribution D
ˆ𝑏 |𝑥1,𝑥2,...,𝑥𝑘 ;

(2) Solve the maximization problem (3).

4.1 Distribution Estimation
Given publisher and user attributions 𝑥1, . . . , 𝑥𝑘 and bid price 𝑏, we

use training a classification model with historical data:

Pr(win) = cdf
ˆ𝑏
(𝑏) = 𝐹

(
𝑤0 +

𝑘∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝛽 𝑔(𝑏)
)
, (4)

where 𝐹 is a fitting function that outputs a value between 0 and

1, which must be monotonically increasing in 𝑏 (higher bid price

leads to higher winning rate), and 𝑔(𝑏) is a bid transformation

function such that 𝐹 → 0 as 𝑏 → 0, that is, as bid price goes to

0, the winning probability also goes to 0, and the weights to be

learned are 𝑤0,𝑤1, . . . ,𝑤𝑘 and 𝛽 . There are different choices of

functions 𝐹 () and 𝑔(𝑏). For 𝑔(𝑏), in this paper, we use the log of

bid price 𝑔(𝑏) def= log(𝑏) → −∞, as 𝑏 → 0. The choice of 𝐹 needs

to satisfy the condition that 𝐹 (𝑥) → 0 as 𝑥 → −∞. We use the

logistic function for this purpose [29],[14].

Pr(win) = logistic =

(
1 + 𝑒−(𝑤0+

∑𝑘
𝑖=1 𝑤𝑖𝑥𝑖+𝛽 log𝑏)

)−1
. (5)

The goodness of fit is usually expressed a log likelihood function,

and the parameters can then be trained by gradient descent [14].

However this formulation simply focuses on the quality of fit. In this

application, we don’t care as much about specific cases being fit, but

rather, whether the surplus function is being predicted accurately.

In other words, wewant tominimize error for the surplus prediction

in Figure 1. To do this, we change error to Squared Surplus Error
where 𝑦 (𝑏) is the actual win/loss and 𝑦∗ (𝑏) is the prediction:

E = [(𝑉 − 𝑏) (𝑦 (𝑏) − 𝑦∗ (𝑏))]2 (6)

Differentiating error with respect to each parameter results in

the function below:

E’ (𝑤𝑖 ) =
2𝑥𝑖 (𝑉 − 𝑏)𝑎((𝑉 − 𝑏) (𝑦 (𝑏) − 𝑦∗ (𝑏)))

(𝑎 + 1)2
(7)

where

𝑎 = 𝑒−(𝑤0+
∑𝑘

𝑖=1 𝑤𝑖𝑥𝑖+𝛽 log𝑏)
(8)

It is now possible to use gradient descent to numerically fit the

parameters to minimize surplus error. 𝑤𝑖 = 𝑤𝑖 − 𝜖 E’ (𝑤𝑖 ). This
addresses some problems with organic win-loss data, such as the

tendency for the fit to be dominated by economically less valuable

auctions and landscape regions. Nowmodel resources are orientated

towards producing a better surplus estimate. We call this "Profitable

Logistic Regression" or "Progistic Regression".

4.2 Surplus Maximization
The optimal bid price 𝑏∗ can now be found by solving the optimiza-

tion (3):

𝑏∗ = argmax

𝑏>0

(𝑉 − 𝑏) logistic
(
𝑤0 +

𝑘∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝛽 log𝑏

)
= argmax

𝑏>0

(𝑉 − 𝑏)
(
1 + 𝑒−𝑤0−

∑𝑘
𝑖=1 𝑤𝑖𝑥𝑖−𝛽 log𝑏

)−1
= argmax

𝑏>0

𝑉 − 𝑏
1 + 𝑒−𝛼𝑏−𝛽

, (9)
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where 𝛼 = 𝑤0 +
∑𝑘
𝑖=1𝑤𝑖𝑥𝑖 .

We show below that, for 𝑏 > 0, there is a single optimum bid

price𝑏∗ which can be bounded from above and below. These bounds

make it possible to implement a fast bisection search.

Theorem 1. For any 𝛽 > 0,

𝑓 (𝑏) = 𝑉 − 𝑏
1 + 𝑒−𝛼𝑏−𝛽

is maximized at some unique 𝑏∗ such that

𝛽

𝛽 + 1 + 𝑒𝛼𝑉 𝛽
𝑉 ≤ 𝑏∗ <

𝛽

𝛽 + 1𝑉 .

Proof. Taking the derivative, we have

𝑓 ′(𝑏) = 𝛽𝑉 − (𝛽 + 1)𝑏 − 𝑒𝛼𝑏𝛽+1

(1 + 𝑒−𝛼𝑏−𝛽 )2𝑒𝛼𝑏𝛽+1
.

For any 𝑏 ∈ (0,𝑉 ], the above numerator can be bounded as

𝛽𝑉 − (𝛽 + 1)𝑏 − 𝑒𝛼𝑏𝛽+1 ≥ 𝛽𝑉 − (𝛽 + 1)𝑏 − 𝑒𝛼𝑉 𝛽 𝑏,

𝛽𝑉 − (𝛽 + 1)𝑏 − 𝑒𝛼𝑏𝛽+1 < 𝛽𝑉 − (𝛽 + 1)𝑏,

and hence

𝛽𝑉 −
(
𝛽 + 1 + 𝑒𝛼𝑉 𝛽

)
𝑏

(1 + 𝑒−𝛼𝑏−𝛽 )2𝑒𝛼𝑏𝛽+1
≤ 𝑓 ′(𝑏) < 𝛽𝑉 − (𝛽 + 1)𝑏

(1 + 𝑒−𝛼𝑏−𝛽 )2𝑒𝛼𝑏𝛽+1
.

Then it’s easy to verify that

𝑓 ′
(

𝛽

𝛽 + 1 + 𝑒𝛼𝑉 𝛽
𝑉

)
≤ 0 < 𝑓 ′

(
𝛽

𝛽 + 1𝑉
)
.

Note that 𝑓 ′(𝑏) is a monotonically decreasing function. It follows

that there is a unique 𝑏∗ ∈
[

𝛽

𝛽+1+𝑒𝛼𝑉 𝛽𝑉 ,
𝛽

𝛽+1𝑉
)
such that 𝑓 ′(𝑏∗) =

0, that is, 𝑓 (𝑏) is maximized at 𝑏 = 𝑏∗. □

Theorem 1 allows us to implement a fast bisection search 4.1 for

the optimal bid price. Starting with the minimum and maximum

bounds on the surplus optimum, 𝑏min =
𝛽

𝛽+1+𝑒𝛼𝑉 𝛽𝑉 and 𝑏max =

𝛽

𝛽+1𝑉 , (per Theorem 1), we know that the lower bound for optimum

has positive derivative, and the high bound has negative. Bisection

can divide the range and find the zero point for the derivative in

O(log𝑁 ) time; this is extremely desirable since the maximization

search must run in real-time in the ad-server. We found in practice

that we could use the gradient information to speed up the search

further. Rather than cutting the range in half each time (𝑟 = 0.5;

step 8), after testing the gradient of the minimum and maximum bid

points, we use our knowledge that the surplus function is convex

and so derivatives shorten close to the optimum. We calculate the

ratio between the surplus derivative at min and max bid locations,

and then use that estimate for the relative distance to the optimum

in bid space. Step 8 and 9 of the pseudo-code show this modification

to 𝑟 . We ran a test with all data for May 21, 2020. The standard

bisection search required on average 8.52 steps per bid request

before terminating. Using the gradient estimate, the time decreased

to 6.89 per request.

Algorithm 4.1 Bisection Algorithm Surplus Maximization

Require:
1: • Model weights:𝑤0,𝑤1, . . . ,𝑤𝑘 , 𝛽 ;

• Feature values 𝑥1, 𝑥2, . . . , 𝑥𝑘 ;

• 𝑉 : expected value of the current ad opportunity

• 𝜖 > 0: minimum valid interval length

• 𝑁 : maximum number of search steps

Ensure: 𝛽 > 0,𝑉 > 0

2: 𝛼 ← 𝑤0 +
∑𝑘
𝑖=1𝑤𝑖𝑥𝑖 .

3: 𝑏min ←
𝛽

𝛽+1+𝑒𝛼𝑉 𝛽𝑉

4: 𝑏max ← 𝛽

𝛽+1𝑉
5: for 𝑖 = 1, 2, . . . , 𝑁 do
6: fp

min
← 𝛽𝑉 − (𝛽 + 1)𝑏min − 𝑒𝛼𝑏

𝛽+1
min

7: fp
max
← 𝛽𝑉 − (𝛽 + 1)𝑏max − 𝑒𝛼𝑏𝛽+1max

8: 𝑟 ← −fp
min
/(fp

max
− fp

min
)

9: 𝑏 ← (1 − 𝑟 )𝑏min + 𝑟 𝑏max

10: fpb← 𝛽𝑉 − (𝛽 + 1)𝑏 − 𝑒𝛼𝑏𝛽+1
11: if fpb < 0 then
12: 𝑏min ← 𝑏

13: else
14: 𝑏max ← 𝑏

15: end if
16: if 𝑏max − 𝑏min < 𝜖 then
17: break
18: end if
19: end for

return 𝑏

5 IMPLEMENTATION
The features used for predicting win probability comprise 12 vari-

ables extracted from the HTTP of an incoming bid request, along

with log(bid price) and log(bid price before shading). The HTTP

attributes include the requesting page" (eg. "cnn.com/finance"), "re-

quest publisher" (eg. "cnn"), "device type" - desktop, mobile, tablet;

"hour of day"; "day of week"; "country"; "user segment"; and other

variables. All of the HTTP features are encoded to be 0-1 variables.

7 days of data in the past were used to train 1 day of data in the fu-

ture. The training data size was 1.2 Billion rows of data with approxi-

mately 56,000 features. For the curve fit, we used the LogisticRegres-

sion method that is part of the PySpark pyspark.ml.classification

library [3]. Training occured nightly and takes approximately 8 to

10 hours.

At run-time, the Bid Shader needs to respond to 5.5 million re-

quests per second peak load, within 100 miliseconds for all systems
1
.

In order to meet these speed constraints, bid shading has to min-

imize the number of computations that it performs. In terms of

memory, by using a single global model, memory consumption is

kept to just 56, 000 floating point numbers. In terms of time, shading

optimization averages just 19 operations per request.

1
5.5 million requests per second peak, 800,000 per second average; 1 million responses

per second at peak load, with 90,000 per second average. Given 750 bid servers, that

means each server has to handle 5,000 requests per second. Overall, less than 10

miliseconds are budgeted for bid shading.
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6 SHADING INSIGHTS
The log of bid price before shading and log of bid price are both

highly predictive
2
(𝛽 = -0.39 and 0.565; McFadden 𝑅2=0.24 and 0.20

respectively [15],[1]). The high predictiveness of "bid price before

shading" - and yet negative sign when included with bid price - is

consistent with previous observations that bid shading tends to be

deeper in auctions with higher valuations [11] [9] [22].

The top 0-1 feature in terms of impact on win probability is

"is new user" (𝛽 = 0.831; 𝑃𝑟=0.52), which is associated with an

increase in chance of winning the auction (since bid prices are

lower). Hour of day 6am (𝛽 = −0.267; 𝑃𝑟=0.01) is associated with a

drop in the probability of winning, likely due to the reduction in

supply [7]. Country US (𝛽 = −0.110; 𝑃𝑟=0.84) decreases the chance
of winning; and the largest 768x1024 ads also are less likely to be

won (𝛽 = −0.267; 𝑃𝑟=0.01).
The predictability of time, user, and other features, for estimating

auction clearing prices, suggest that shading should be effective, as

noted in work on the preconditions for shading in Section 3 [26].

7 COMPARISON TO BENCHMARKS
We ran several of the algorithms in Section 3 as benchmarks. These

included: (1) Sell-Side Shading Service (SSP) [4], [27], [5], [19],

[20], (2) Non-linear segment-based (NL) [24], Distribution estimator

with Normal (NRML), Exponential (EXP) Distributions [34], Linear

Regression [8] and Unshaded (Uns). Win-Rate is labeled "WR" in

the tables to follow.

The prior work benchmarks aren’t ideal - the win distribution

approaches [34] don’t explicitly maximize surplus and so we expect

them to not perform as well. The SSP services seem to be geared

towards maintaining win-rate. Never-the-less we have included

them, both to compare to prior work, but also to quantify the gain

that surplus maximization approaches can deliver in practice.

Unlike the other benchmarks, the Segment-based algorithm does

maximize surplus [24]. Under a favorable selection of segments, the

Segment-Based Method might even be tuned to perform as well or

better than the current method (despite the scaling problem with

using more features). Our purpose in showing these benchmarks

isn’t to claim that this particular algorithm is "the best", but rather

to show that Surplus Maximizers have an advantage, to quantify

the gain, and to note that WR, which is fully automated, uses all

available features to estimate the surplus landscape, and has excel-

lent memory and speed properties, performs comparable to other

reported approaches.

The experiments below (except ones with the SSP service) were

run on auctions for which the minimum bid prices to win were

known. Using this data it was possible to calculate surplus perfor-

mance as a percentage of the optimal surplus. The algorithms were

tested on a day of saved auction data from May 21, 2020. Training

took 6 hours and May 22 was used for evaluation. 100% of the bid

requests are scored by each algorithm, so all algorithms operate on

the same set of records. The results are shown in Table 1.

The Distribution estimator methods (Nrm, Exp) estimate the min-

imum bid to win and so are not expected to do well in maximizing

surplus. As a group they were about 7% below WR. The Nonlinear

2
In the following, the regression coefficient is labeled 𝛽 and 𝑃𝑟 is the percentage of

observations where the 0-1 variable is 1

Table 1: Benchmark Algorithms

Metric WR NL Nrm LR Exp Uns

%opt surp 50.6% 49.0% 48.0% 47.3% 46.0% 0%

%opt spen 41.7% 56.0% 42.7% 39.8% 31.1% 176%

%opt imps 56.6% 49.1% 53.1% 50.3% 42.6% 100%

shad fact 0.6 0.55 0.62 0.61 0.42 1.00

CPM 1.06 1.64 1.16 1.14 1.05 2.52
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Figure 2: Shading factor distributions for three algorithms.
SSP has more shallow shading factors.
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Figure 3: Production Surplus Performance by Algorithm.

Segment method generated the second highest surplus besides WR.

This makes sense given that it is a legitimate surplus maximizer.

WR generates the highest surplus (50.6%). In sum, the Surplus Max-

imizers produced the most surplus, which was expected.

We also compared an anonymous SSP Shading Service. We had

to separate this analysis due to a service issue. When using the

SSP Shading Service for real-time bidding, the service disabled the

minimum bid to win functionality (!) As a result, we were unable

to do an optimality analysis.

Overall, the SSP Shader delivered about 15% more impressions

than WR - as noted SSPs have an incentive to try to monetize

more traffic. However it delivered about 4.3% lower surplus. The

bidding distribution from the Sell-Side Service is shown in Figure 2.

Where-as the SSP’s shading distribution is right-skewed, with most

shading at 90% and above, the WR distribution - which generates

more surplus - is left-skewed, with most shades below 72%. It seems

likely that the SSP algorithm is geared towards generating high

sales, but not necessarily high advertiser surplus.

8 PRODUCTION RESULTS
After rolling out the WR algorithm, we were able to monitor its

performance by maintaining a percentage of traffic that was ran-

domly allocated to each algorithm. The analysis spans from March

18 to May 6 2020 and is shown in Table 2. WR captured 46.7% of the

maximum possible surplus, where-as Non-linear captured 38%. Bid

prices on WR were about 45% lower than their unshaded prices.
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Table 2: Production Results

Metric WR LR NL Uns

% opt surp 46.7% 44.8% 38.2% 0.0%

% opt spend 79.1% 72.6% 89.9% 410%

% opt imps 60.3% 51.4% 56.0% 100%

shad fact 0.55 0.53 0.59 1.00

bid price 1.13 1.02 1.21 2.05

𝜎 % opt surplus 2.9% 2.3% 4.4% 0.0%

𝜎 % opt spend 7.0% 3.7% 24.5% 129%

𝜎 % opt imps 3.7% 1.9% 10.5% 0.0%

𝜎 shad fact 0.022 0.030 0.076 0.000

𝜎 bid price 0.166 0.108 0.287 0.899

days 49 42 50 43

9 CONCLUSION
There is evidence that First Price Auctions have created problems

for advertisers. Average traffic prices are higher, with estimates

ranging between 5% and 50% [27], [6], [5], [23]. [6] also reported

that after their SSP switched to First Price, 10% of advertisers actu-

ally discontinued bidding. Our experiments confirm these findings;

without a shading solution, CPM would approximately double.

DSPs are required to compute the private value of impressions

based on advertiser parameters, and they also execute a large num-

ber of trades, and so can build up an ability to predict auction

prices. This makes it possible to implement rational shading similar

to other industries [25] [21], [22]. Advertiser bids follow the value

of traffic, and this follows daily, hourly, and site patterns. As a result,

auction prices will always have structure that can be used by some

advertisers with other advertisers have less flexibility.

The SurplusMaximization approach of this paper delivered about

7% higher surplus than naive methods just designed to submit the

probable clearing price. Publicly available data shows medium sized

DSPs managing between $260 to $1 Billion in advertiser spend [2].

The Shading gains reported in this paper therefore represent $18

to $100 million in additional yield that is provided to advertisers.

Shading has an enormous impact on advertiser profitability. Now

that the online Ad Industry has increasingly shifted to First Price

Auctions, it seems likely that the new advertising technology arms

race will be in the domain of Bid Shading.
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