
Efficient Adversarial Chaff Generation for Challenge-
Response Authentication Over Unsecure Networks

with an Application to Civilian Radio Networks
Brendan Kitts and Andrew Potter

Verizon
Seattle USA

brendan.kitts@verizonmedia.com

Abstract— Challenge Response is one of the cornerstones of
online security. The simplest form of Challenge-Response is asking
for a password. Much cryptographic work has focused on
developing strong forms of encryption, however some networks
require transmission over networks which might be monitored.
We discuss this problem in the context of a particular kind of open
network used by 30,000 users, and which is an important medium
supporting emergency services. The current challenge-response
implementation on this network relies upon sending information
about the password. We calculate the number of observations
needed to capture password using brute force attack, replay
attack, and version spaces. We show that even strong passwords
(completely random set of characters) are at significant risk of
discovery in as few as 16 login attempts. We next present an
algorithm that adds adversarial “chaff” to the password
information designed to minimize relative information gain
during challenge-response. We show that, with enough adversarial
chaff, unambiguous password recovery from passive data capture
may not be possible, although passwords can still be recovered by
an attacker actively probing the system. Despite this, better
protection of passwords is useful, and would be immediately
helpful to people using these services.

Keywords—challenge, response, authentication, chaff,
unsecure, open, APRS, email, amateur, radio (key words)

I. INTRODUCTION
Establishing identity is a common problem in computer

security. In most circumstances, this is achieved by issuing a
challenge to which the user must respond correctly. A prompt
asking for a password is the simplest example. The password is
typically encrypted using a variety of strong encryption
standards to protect against discovery.

However, in some cases, the network over which the
password needs to be transmitted is monitored or unsecure. It
would be simple for an attacker to capture the response, and then
use it to gain access.

To authenticate in this situation, it is common to create a
“shared secret” such as a password, between the user and
service, along with an agreed upon mapping function such as a
hash. The service will then issue a challenge in the form of a
one-time occurring nonce integer. The user uses the challenge
plus the secret to compute the answer and sends back a response.
The server compares the returned response against their own
calculation, and if equal they are authenticated. Assuming a

cryptographically secure hash function it will be difficult for an
attacker to infer the generating hash function and secret.

In 1998 Ronald Rivest proposed an alternative,
Steganographic method, for unsecure networks [8]. Unlike the
cipher approach above, in which the message content is
encrypted, in Steganography, the message is hidden in plain text,
within another message.

Steganography has a long history. The Cardan Grille is based
on an ancient technique where a paper template is created with
holes in it. When placed over a text, the holes reveal an
embedded message [2]. In more modern times, data has been
embedded in the low order bits of images.

Rivest proposed that a message could be first broken down
into pieces, with each piece being assigned a valid Message
Authentication Code (MAC) and a Sequence Number for
reconstruction. After this, generated “chaff” – false information
with false MACs and Sequence Numbers, would be embedded
within the message. The combined message could then be
transmitted “in the clear” to a receiver. The receiver would know
the algorithm for checking the validity of MACs, and would
simply re-assemble the valid message fragments by sequence
number.

Chaffing has some curious advantages. Most internet users
reside in countries with laws requiring assistance to decrypt
communications, but this unfortunately means that it is not
inconceivable that encrypted communications may be
vulnerable to compromised Back Doors [6]. Chaffing may be
immune to this vulnerability, and can be implemented peer-to-
peer over monitored networks. Estrada (1999) also noted that
Chaffing could be used to embed a covert communication
channel within an existing open communication network [3].

Chaffing does result in much larger message; for instance,
[5] noted that a 30KB message will generally grow to about
75MB. However, if the message were compressed prior to
chaffing, it would decrease message size. This would present an
additional advantage, as the resulting message content would be
near random, and so random chaff would actually be quite
effective in obscuring the real message. Random chaff could
enable third parties, with no knowledge of message content, to
participate in making messages more secure [8]. Samid (2018)
observed that non-randomized chaff might be even more
effective [9].

In this paper we use the concept of chaff to improve the
security of authentication challenges and responses over open
networks. We also use Samid’s insight that non-random chaff
may be more effective at hiding message content.

The particular problem that we deal with is how to
authenticate email users over unencryptable Amateur Radio
Networks [4]. We analyze an existing Challenge-Response
system and note that passwords can be reliably recovered in just
16 trials. We then propose a chaffing algorithm based on
minimizing Information Gain from subsequent responses,
designed to slow time to discovery.

II. CIVILIAN RADIO NETWORKS
Amateur radio spans a wide range of frequencies ranging

from long wave to high frequency, VHF, UHF and Microwave,
where licensed radio operators are allowed to transmit and
receive information. Amateur radio is often used during
emergencies to provide fall back communications for
government entities. RACES (Radio Amateur Civilian
Emergency Services) and ACS (Auxiliary Communication
Services) are organizations supported by national laws that can
be activated during emergencies to assist communications in
natural and man-made disasters.

In the United States, radio networks are governed by Part 97
of the FCC regulations, and other countries have similar
regulations. Under these regulations, amateur radio data
transmission must not be encrypted. Title 47 Part 97.309.B
states “data emissions using unspecified digital codes must not
be transmitted for the purpose of obscuring the meaning of any
communication” [4]. The reasoning behind this is that amateur
radio uses public frequencies, and so the data being transmitted
should be readable by the public.

This prohibition makes it difficult to support standard
communication services like email. If a user wants to read email
over a radio network (because regular cellphone tower or fiber
networks are down during a disaster), authentication is needed
to ensure that the proper user is sending and receiving email for
a given email address.

The most widely used email system on amateur radio is
APRS and Winlink – these can be used together, or with Winlink
alone [12]. This email system has been deployed with great
success in US Western Wildfires of 2018, Hurricane Katrina,
Rita and Maria [17], and has a record of deployments as long
ago as 1991 [16].

APRS (Automatic Packet Reporting System) is widely used
with about 30,000 stations transmitting every hour as of 2019
[10]. APRS was developed by Bob Bruninga in the 1980s [1],
and the acronym, APRS is partially derived from his call sign
WB4APR. APRS is similar in operation to TCP/IP, in that AX25
packets are broadcast via radio usually on a frequency of
144.390 MHz. Receiving stations read the message, and then re-
broadcast until the message reaches its intended target, or the
message decrement drops to 0 in which case the message is
abandoned as undeliverable. Any radio station can receive and
interpret the transmitted data [1, 11].

Winlink comprises radio enabled servers for managing,
receiving and transmitting emails, and can be standalone or

accessed via APRS [12]. Winlink has about 12,000 registered
email users, and transmits about 100,000 emails per month [14].

This paper is mainly concerned with accessing Winlink via
APRS (APRSLink). In this mode, a radio operator uses APRS
to send email commands and messages. Receiving radio stations
pass these messages over the air until a radio station with a
working internet connection (iGate), is reached. When this is
reached, it sends the email over the internet to Winlink servers
which implement the email commands. When sending email
back to the originating station, the process is reversed [15].

Authentication via password is challenging over radio
networks, since the passwords have to be transmitted “in the
clear”. Winlink creators set up the following challenge-response
protocol to provide some security for accessing email via APRS:

(1) A password is created externally on the web.

(2) When logging in over open radio network, the system
prompts with “Login [XYZ] where X,Y,Z are three
character positions in the password.

(3) The user then responds with the three characters of the
password in any order, and also adds another three (3)
characters of “chaff” – random characters that are
designed to make it harder for external viewers to guess
the password.

The password controlling access to the account is currently
between 6 and 12 characters and comprise an alphabet of upper
case letters (A-Z), numeric digits (0-9), and symbols
.!@#$%^&*()_. This alphabet has 48 characters [13].

There are two kinds of vulnerabilities with this system: (1)
One-time Access to services: a malicious party may be able to
log into email service, and then send/receive emails. (2)
Password recovery: If the user’s password can be recovered,
then the attacker can take control of the account, change the
password, and perhaps even log into other services used by the
same user. This is a more serious problem.

This paper will address the problem of how to better secure
authentication over these networks. We describe the current
framework including several attack methods. We show that even
strong passwords under APRSLink/Winlink can be captured in
as few as 16 observations with 99% probability of success. We
next discuss an algorithm for generating adversarial “chaff” that
is designed to minimize information gain for attackers. Well-
selected chaff may be able to prevent unambiguous recovery of
the password, although the possibilities can be narrowed, and
the attacker can then still search the remaining possibilities.
Despite still being vulnerable, this is a meaningful improvement
over the current system.

TABLE I. WINLINK/APRSLINK EMAIL SESSION

Date time Path Message
3/17/19 14:17:53 WLNK-1>[CALLSIGN] You have 2 Winlink mail messages pending
3/17/19 14:18:00 [CALLSIGN]>WLNK-1 l
3/17/19 14:18:01 WLNK-1>[CALLSIGN] Login [798]:
3/17/19 14:19:11 [CALLSIGN]>WLNK-1 1UTERW
3/17/19 14:19:12 WLNK-1>[CALLSIGN] Hello [CALLSIGN]
3/17/19 14:19:22 [CALLSIGN]>WLNK-1 L
3/17/19 14:19:22 WLNK-1>[CALLSIGN] 1) 03/17/2019 21:19:20 test from external 371

bytes
3/17/19 14:19:23 WLNK-1>[CALLSIGN] 2) 03/17/2019 21:19:20 test 590 bytes
3/17/19 14:19:50 [CALLSIGN]>WLNK-1 R1

3/17/19 14:19:51 WLNK-1>[CALLSIGN] test from external
Fm:SMTP:xxxx@xxxx.com Msg:this is an email

3/17/19 14:19:52 WLNK-1>[CALLSIGN] transmitted over radio.
3/17/19 14:20:40 [CALLSIGN]>WLNK-1 ?
3/17/19 14:20:41 WLNK-1>[CALLSIGN] SP, SMS, L, R#, K#, Y#, F#, P, G, A, I, PR, B (? +

cmd for more)
3/17/19 14:21:34 [CALLSIGN]>WLNK-1 ? G
3/17/19 14:21:35 WLNK-1>[CALLSIGN] Return closest RMS Packet Gateway

information: G#
3/17/19 14:21:45 [CALLSIGN]>WLNK-1 G1
3/17/19 14:21:46 WLNK-1>[CALLSIGN] Gateway: W7ACS-10 CN87UO 5 miles -60 deg,

430.850 1200b
3/17/19 14:21:56 [CALLSIGN]>WLNK-1 I
3/17/19 14:21:57 WLNK-1>[CALLSIGN] APRSLink v5.0
3/17/19 14:22:18 [CALLSIGN]>WLNK-1 B
3/17/19 14:22:18 WLNK-1>[CALLSIGN] Log off successful

III. PROBLEM DEFINITION
Let an APRS/Winlink Email password W be equal to a

sequence of L characters W = <w1, w2, w3, …, wL> : wi ∈
Alphabet. The cardinality of Alphabet=A. The most secure
passwords will be random sequences, and we use this
assumption for calculating attack time complexity. (Attack
times could be reduced further using a dictionary, but this would
introduce some arbitrariness to these results, and random
sequences also enables closed form solutions in many cases).

Let a challenge on iteration t be defined as a set of positions
Challenget = {p1, p2, …, pP} : pi ∈ [1..L] where P is the number
of valid positions to send back. Let the response at iteration t be
defined as the set of P+C characters from the alphabet Responset
= {a1, a2, …, aP+C} : ai ∈ Alphabet. A valid response is one for
which the characters in the response are members of the set of
valid position POS. Responset = {a1, a2, …, aP+C} : ai ∈POS ∪
CHAFF; POS = {𝑤$%, 𝑤$&, …, 𝑤$'}; CHAFF = {c1, c2, …, cC}
: ¬ (ci ∈ POS) & ci ∈ Alphabet where P is the number of
requested positions, C is the number of chaff characters to sent
back. If the system receives an incorrect response to the
challenge, it will persist with 2 more tries, and after TRIES=3
consecutive failures, will disallow further access.

The problem for the Attacker is to use a set of observed
Authentications (Challenget, Responset) ∈ Authentications to
infer the user’s underlying password W or otherwise gain access
to the system by correct response to challenges. The default
parameters for this problem are Alphabet size A=48, number of
valid position characters P=3, number of chaff characters C=3,
password length L = 6, TRIES=3.

IV. ATTACK I: RANDOM GUESSING
The expected time to randomly guess a password is 0.5*AL.

For a length L=6, A=48, random character password, that is E(T)
= 6,115,295,232 trials. However, since only part of the password
is requested - P position characters – the probability of one-time-
access is much higher. The probability of access will equal the
chance of drawing P successes (red balls), from P+C trials,
given that there are P correct results for the valid positions (red
balls), and there are A-P incorrect characters (blue balls); a
Hypergeometric distribution. The expected time E(𝑇) is the
inverse of this probability. For P=3, C=3, A=48, 𝐸(𝑇) =

/
0''10

23'
'453'1

0 2
'451

6
78

= 833 trials.

V. ATTACK II: REPLAY
Given that the network is monitorable, better performance

can be achieved by recording all of the challenges and their
successful responses into a codebook. After this is done, the
attacker can lookup the valid response for any challenge. There
are Q = L!/(L-P)! unique possible challenges or queries, and so
storage would comprise every query with the chaff filled
response Q∙(P+C). The expected time needed to sample all
challenges will equal: 𝐸(𝑇) = 𝑄 ∙ ∑ 08

<
1=

<>8 = 𝑄 ∙ 𝐻= where 𝐻=
is the Harmonic sum. Assuming L=6, P=3, it will take 644 trials
to fill this codebook. It is, however, possible to speed up further
by using an incomplete codebook, since the user has TRIALS=3
trials to enter a correct response to a challenge. The formula is
below where f is the codebook fill rate needed. The trials needed
to capture challenge response entries that would have
probability of success crit=1.00, 0.99, 0.95 and 0.90 is 644, 186,
120 and 93 trials.

E[T]=𝑄 ∙ @𝐻= −	𝐻(=7C=)D where 𝑓 = 1 − exp 0JK(87LM<N)
OPQRS

1 	

VI. ATTACK III: VERSION SPACES
In order to speed password capture even further, we

introduce the idea of Version spaces. A Version space is a set of
hypotheses, comprising a set of disjunctive propositions vi,1 ∨
vi,2 ∨ … ∨ vi,A [7]. For each password character position i, define
an array of size A which represents 1 if the character is possible,
and 0 if it is not. vi,a ∈ {0,1}: a ∈ A and i ∈ [1..L]. Initialize vi,a
= 1	∀i,a (all hypotheses are possible) and L = 12. Next every
time that we observe a challenge and response, update the
version space as follows:

vi,a = vi,a ∧ 0 ∀a ∈ A – (Responset ∪ Challenget)

L = max (L, max(Challenget))

The space needed to store the Version Space is modest; at
most O(L ∙A) bits where L=12 is the maximum length of
password. Given default parameters, only 12*48 = 576 bits are
needed per user in order to execute this attack. The speed at
which Version Spaces can be used to capture passwords can be
calculated as follows: Assume that the user is adding random
chaff. The expected time to recover password can be calculated
as the expected time to sample all positions multiplied by
expected time to eliminate chaff:

𝐸(𝑇) = W𝐿 ∙ Y Z
1
𝑖
\

<>8:^:_

` ∙ aln(1 − 𝑐𝑟𝑖𝑡)/ln Z
𝑃 + 𝐶
𝐴

\l

Using Stirling’s Approximation, the left-hand side of the
equation grows as a function of the 𝐿 ∙ ln(𝐿), making this an
extremely fast algorithm. Given a desired 𝑐𝑟𝑖𝑡=0.90 and 0.99
chance of recovering password, the time to recovery is equal to
8.3 and 16.6 trials.

VII. ADVERSARIAL CHAFF
We can now use Version Spaces to create chaff designed to

defeat attackers. A simple algorithm is to select the chaff
character which results in the least loss of hypotheses. This is,
equivalently, the character a with the highest match count with

existing hypotheses: 𝑎:max∑ 𝑣$,r$∈^sS . However, this
approach won’t protect a critical character whose loss might
reveal the correct password character. A better approach is to
calculate the Entropy before 𝐸[𝑣] versus after removal of each
candidate chaff character 𝐸[𝑣\𝑎] , and select the character 𝑎
which minimizes Information Gain Δ𝐸[𝑎]

𝑎:minΔ𝐸[𝑎] = 	𝐸[𝑣] − 𝐸[𝑣\𝑎]

𝐸[𝑣] = ∑ ∑ Z 8
#z{
\ ∙ ln Z 8

#z{
\r∈|:z{,}>8$∈^sS

where #𝑣$ = ∑ 𝑣$,rr∈|

For example, let the correct characters for p1,p2,p3 = (a,b,c).
The hypothesis space for each position is v1 = {a,b,c,d}; and p1
= a; v2 = {b,e} and p2=b; v3 = {c,a,b,d} and p3 = c. Password
Entropy = Entropy([1/4 1/4 1/4 1/4]) + Entropy([1/2 1/2]) +
Entropy([1/4 1/4 1/4 1/4]) = 3.4657. The character with the
maximal coverage (and so minimizes reduction in hypotheses)
is “d”. If “d” is selected for chaff then set of hypotheses only
decrease by 1. v1 = {a,b,c,d}, v2={b}, v3={c,a,b,d}. However the
password character for position 2 has been revealed exactly as
“b”. The new PasswordEntropy = [entropy([1/4 1/4 1/4 1/4]) +
entropy([1]) + entropy([1/4 1/4 1/4 1/4])] = 2.7726. The
Entropy drop is 3.4657-2.7726 = 0.6931. If “e”, instead, is
selected, then the total hypotheses decrease by 2. However now
the password character in position 2 remains unknown; it is
either “b” or “e”. After deployment of “e” as chaff, v1 = {a,b,c},
v2={b,e}, v3 = {c,a,b}. The new Password Entropy =
[entropy([1/3 1/3 1/3]) + entropy([1/2 1/2]) + entropy([1/3 1/3
1/3])] = 2.8904. Entropy drop is equal to 3.4657-2.8904 =
0.5753. Although more hypotheses were invalidated, this
resulted in less information gain.

Using Adversarial Chaff, it is often possible to reach a state
where chaff can continue to be selected with Zero Information
Gain, so leading to a discovery time which is infinite as long as
Adversarial Chaff is selected each time. We observe this by
noting some cases: If #𝑣$ > P+C then any valid Response must
reduce the hypothesis space by at least 1, so Information Gain
will occur. However if the length of hypotheses for any position
p drops below P+C, then it may be possible to construct
Adversarial Chaff which produces 0 Information Gain for
position p. Two common cases where this occurs are: (1) If
𝑣$,r = 1: 𝑎 ∈ 𝑃𝑂𝑆 then a Response with any amount of chaff
will not result in any ambiguity reduction for this position p,
since all POS characters must be part of the response. Setting
Responset = POS ∪ CHAFF where CHAFF can be any
characters, will result in no further hypothesis reduction and
information gain of 0 each time. (2) If ∑ 𝑣$,rr∈^sS ≤ 𝑃 ∧
∑ 𝑣$,��∈��|�� ≤ �

^
∧ 𝑏 ≠ 𝑎: ∀𝑝 then setting the Response

equal to POS ∪ {𝑣$,� } will result in no further hypothesis
reduction for each position p.

An attacker observing Adversarial Chaff can therefore end
up stuck in a loop of observations that provide no further
information. Faced with Zero Information observations, they
would need to run their own “probes” with their own Responses
to disambiguate from the alternative hypotheses. They would
logically pursue this by using “Collusive Chaff” to maximize
information gain at each iteration. Collusive Chaff uses the same

Entropy calculation, but each iteration, characters are chosen
that maximize Information Gain.

However actively probing radio email services is
significantly more resource intensive than passively capturing
passwords by observing challenges and responses. When
passively mining passwords, the attacker just needs to issue a
query against online APRS traffic, which is equivalent to
reading a text file and processing the text to look for logins. They
can capture an enormous amount of data. For an active probe,
the attacker would need to actually issue queries to Winlink,
under an FCC issued radio callsign, and both Winlink and APRS
have radio bandwidth limitation mechanisms that slow the
number of queries that can be issued per minute, and also halts
logon attempts to the service after 3 unsuccessful challenge-
response TRIES.

Therefore, while an attacker could pursue direct queries, it
would be slower. Winlink limits login attempts to 3 queries per
hour, versus passive mining where it is possible to capture
30,000 messages per hour. In summary, using Adversarial Chaff
to close off direct capture of passwords from ultra-efficient,
“passive mining” efforts, is useful for protecting radio operator
passwords.

VIII. SIMULATION
A simulation was implemented to explore how the problem

scales. The simulation generated a random password string, and
then ran through different combinations of number of position
characters P, number of chaff characters C, password length L,
and Adversarial Chaff versus Random Chaff, recording the
length of time before the password was recovered, and also if
the password was recovered. If the hypothesis set was such that
further chaff couldn’t reduce it further, recovery was halted and
recovery was reported as 0.

Longer passwords take longer to crack, as would be expected
(Table II). However, as we observed in our Version Space
derivation, time only grows as a function of 𝐿 ∙ ln(𝐿) (Fig. 1).
For a length L=6 password, simulation average for discovery
time was 8.5 steps. For a password length L=12, discovery
grows only slightly to 18.9 observations.

One might think that adding more random chaff characters
would slow discovery, since only C=3 chaff characters are being
used, which leaves a lot of hypotheses being invalidated each
step. However, increasing the chaff doesn’t fundamentally curb
the exponential speed with which hypotheses are invalidated.
Increasing chaff from 3 to 10 only extends the time to recovery
from 8.5 to 13.2 observations (Table III). High levels of chaff
also have the side-effect that they increase the chance of
accidental one-time-access. For instance, 10 chaff characters
results in an expected one-time-access occurring every 25
responses. Increasing chaff from 3 to 6 keeps one-time-access
probability at lower than one time in 100 and is probably a better
tradeoff.

Compared to these countermeasures, Adversarial Chaff
works much better for slowing discovery. For a L=6 password,
Random chaff results in discovery in 8.5 steps. Adversarial
Chaff runs for 25 steps forcing limited reduction in hypotheses,
before the simulation terminates because the password
hypotheses cannot be further reduced (Table IV). Thus,

Adversarial Chaff keeps hypotheses alive longer, reaches a set
of final hypotheses which are ambiguous.

Fig. 1. The number of observations needed to recover password using a
Version Space data structure for tracking viable hypotheses. Time complexity
scales approximately as a function of L*ln(L); and note the curve above is just
slightly worse than linear. Even long passwords can be recovered very quickly
(L∈[3..30]; C=3; P=3; Chaffing Strategy = Random).

TABLE II. PASSWORD LENGTH VERSUS TIME TO RECOVER USING
VERSION SPACE ATTACK (L∈[1..30], C= 3, P= 3; CHAFF = RANDOM)

L
Password

length

E(T)
Time to
recover
passwor

d

L
Passwor
d length

E(T)
Time to
recover
passwor

d

L
Passwor
d length

E(T)
Time to
recover
passwor

d
3 2.2 11 17.7 21 39.7
4 4.5 12 18.9 22 37.9
5 5.5 13 23.1 23 39.8
6 8.5 14 22.5 24 55.0
7 9.8 15 27.7 25 50.7
8 11.1 16 31.4 26 58.7
9 13.6 17 29.6 27 59.6
10 17.7 18 35.1 28 53.7

TABLE III. QUANTITY OF CHAFF VERSUS TIME TO RECOVER USING
VERSION SPACE ATTACK (L=6, C∈[1..10], P= 3; CHAFF = RANDOM)

C Number
of Chaff

characters

E(T) Time
to recover
password

1 8.6
2 7.7
3 8.5
4 9.9
5 8.7
6 9.6
7 10.7
8 11.0
9 13.1

10 13.2

TABLE IV. CHAFFING STRATEGY VERSUS TIME TO RECOVER USING
VERSION SPACE ATTACK (L∈[3..20], C= 3, P= 3)

Passwor
d length
L

Rando
m
Chaff
E(T)

Adversari
al Chaff*
E(T)

Passwor
d length
L

Rando
m
Chaff
E(T)

Adversari
al Chaff*
E(T)

3 2 1 12 19 26
4 5 5 13 23 26
5 6 11 14 23 25
6 9 25 15 28 27
7 10 25 16 31 35
8 11 18 17 30 30
9 14 20 18 35 33
10 18 17 19 34 39
11 18 35 20 33 48

* Adversarial Chaff simulation code halts when it detects that it can not reduce
hypothesis space any further. The number reported above is the number of steps
until this state was reached.

IX. DISCUSSION
A general solution for secure authentication over radio

networks is of great interest for the 822,000 radio operators in
the United States. Access to standard communication methods
such as email and SMS, generally needs some kind of
authentication in order to work. FCC Regulations prohibiting
encryption have been in place for decades, and there is little
likelihood of regulatory changes.

However new information security methods are available
which would enable transmission of information in the clear, but
whilst still being able to properly establish the identity of the
user. One promising approach is a Zero Knowledge Proof [18].
In this scheme, the user shows that they can solve a problem,
without revealing the details to the service or other monitoring
parties. The service asks the user a question, and they answer.
The information being sent is not a cipher and is sent in the clear.
However only the user knows the correct answer for the question
being sent by the service. The fact that one radio operator knows
an answer to a question, and another does not, should not count
in any way as encryption and so should be consistent with FCC
regulations; in the same way that George may know my favorite
sports team, but Jane may not.

There are some practical challenges involved in
implementing Zero Knowledge Proofs and the Chaffing
approach in this paper, in a way that amateur radio operators
would be able to use in practice. Radio operators often work in
poor conditions, and may not always have access to a computer
to perform the calculations needed to respond to an algorithmic
challenge. It is possible that a calculation feature could be added
to Software Defined Radios. However, there is a much easier
approach. During an emergency, smartphones probably won’t
be able to access the internet or send/receive calls. However,
these devices, never-the-less, are superb computers with
excellent power consumption, and tend to always be on their
person. They could be used as a portable app for computing a
response from a challenge sent over the air via radio.

We’ve shown that Adversarial Chaff can be employed to
good effect in a domain where clear transmission is required.
We’ve also shown that it can be used to improve security for
Winlink/APRS email authentication. Clear transmission
methods such as Chaffing and Zero Knowledge Proofs are a

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

tr
ia

ls
un

til
 re

co
ve

ry

password length

Simulat ion Expected

good match for the requirements of Amateur Radio where clear
transmission is required. These methods help to ensure that
messages remain open and readable, and also that authentication
can be performed so as to support emergency services.

REFERENCES
[1] B. Bruninga, “Introduction to APRS”, APRS.Org Website, 2019,

http://www.aprs.org/APRS-docs/ARTICLES.TXT. APRS
[2] A. Cheddad, J. Condell, K. Curran, P. McKevitt, “Digital Image

Steganography: Survey and Analyses of Current Methods”, Signal
Processing, Vol. 90, Iss. 3, March 2010, pp. 727-752

[3] N. Estrada, N. Feamster, M. Freedman, “An Application Layer Covert
Channel: Information Hiding with Chaffing”, (1999),
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.4318&rep
=rep1&type=pdf

[4] Amateur Radio Service, Code of the Federal Regulations, Federal
Communications Commision, Part 97, Title 47, 2009,
https://www.govinfo.gov/content/pkg/CFR-2009-title47-vol5/pdf/CFR-
2009-title47-vol5-part97.pdf

[5] J. Larkin, “Implementation of Chaffing and Winnowing: Providing
Confidentiality without Encryption”, Computer Science Technical
Reports No. CSBU-2006-10, Department of Computer Science,
University of Bath, 2006.

[6] J. Lewis, D. Zheng, W. Carter, “The Effect of Encryption on Lawful
Access to Communications and Data”, Technical Report, Center for
Strategic and International Studies, February, 2017.

[7] T. Mitchell, “Generalization as Search”, Artificial Intelligence, Vol. 18,
No. 2, 1983, pp. 203–226.

[8] R. Rivest “Chaffing and Winnowing: Confidentiality without
Encryption”, 1998, http://theory.lcs.mit.edu/~rivest/publications.html

[9] G. Samid, “Rivest Chaffing and Winnowing Cryptography Elevated into
a Fully Fledged Cryptographic Strategy”, Proceedings of the IEEE
International Conference on e-Learning, e-Business, Enterprise
Information Systems and e-Government, Las Vegas, July 30, 2018.

[10] S. Simai, “APRS Stations Real-Time Activity Monitor”, APRS.Link
website, 2019, https://aprs.link/app/aprs/statistics/aprsstations

[11] I. Wade, (ed) “APRS Protocol Reference Protocol Version 1.0”, APRS
Working Group, Tucson Amateur Packet Radio Corp, Tucson, 2019,
http://www.tapr.org

[12] Winlink Development Team, Winlink website, 2019,
http://www.winlink.org

[13] Winlink Development Team, “Guidelines on Winlink Password Change”,
Winlink website, 2019, https://winlink.org/WL2Kforms/passchange

[14] Winlink Development Team, “Winlink Statistics”, Winlink webpage,
2019, https://winlink.org/RMSChannels

[15] Winlink Development Team, “APRSLink”, Winlink website, 2019,
https://winlink.org/APRSLink

[16] Winlink Development Team, “Last Voice Kuwait”, WANE-TV/CBS
News Documentary, 1991, https://winlink.org/content/last_voice_kuwait

[17] Winlink Development Team, “Winlink Was There… Lives and property
saved, damage mitigated, Volunteer Stories”, Winlink Website, 2019,
https://winlink.org

[18] M. Jakobsson, K. Sako, R. Impagliazzo, “Designated verifier proofs and
their applications”, International Conference on the Theory and
Applications of Cryptographic Techniques, 1996, pp. 143-154. Springer,
Berlin, Heidelberg.

