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Abstract— Challenge Response is one of the cornerstones of 
online security. The simplest form of Challenge-Response is asking 
for a password. Much cryptographic work has focused on 
developing strong forms of encryption, however some networks 
require transmission over networks which might be monitored. 
We discuss this problem in the context of a particular kind of open 
network used by 30,000 users, and which is an important medium 
supporting emergency services. The current challenge-response 
implementation on this network relies upon sending information 
about the password. We calculate the number of observations 
needed to capture password using brute force attack, replay 
attack, and version spaces. We show that even strong passwords 
(completely random set of characters) are at significant risk of 
discovery in as few as 16 login attempts. We next present an 
algorithm that adds adversarial “chaff” to the password 
information designed to minimize relative information gain 
during challenge-response. We show that, with enough adversarial 
chaff, unambiguous password recovery from passive data capture 
may not be possible, although passwords can still be recovered by 
an attacker actively probing the system. Despite this, better 
protection of passwords is useful, and would be immediately 
helpful to people using these services. 

Keywords—challenge, response, authentication, chaff, 
unsecure, open, APRS, email, amateur, radio (key words) 

I. INTRODUCTION 
Establishing identity is a common problem in computer 

security. In most circumstances, this is achieved by issuing a 
challenge to which the user must respond correctly. A prompt 
asking for a password is the simplest example. The password is 
typically encrypted using a variety of strong encryption 
standards to protect against discovery. 

However, in some cases, the network over which the 
password needs to be transmitted is monitored or unsecure. It 
would be simple for an attacker to capture the response, and then 
use it to gain access. 

To authenticate in this situation, it is common to create a 
“shared secret” such as a password, between the user and 
service, along with an agreed upon mapping function such as a 
hash. The service will then issue a challenge in the form of a 
one-time occurring nonce integer. The user uses the challenge 
plus the secret to compute the answer and sends back a response. 
The server compares the returned response against their own 
calculation, and if equal they are authenticated. Assuming a 

cryptographically secure hash function it will be difficult for an 
attacker to infer the generating hash function and secret. 

In 1998 Ronald Rivest proposed an alternative, 
Steganographic method, for unsecure networks [8]. Unlike the 
cipher approach above, in which the message content is 
encrypted, in Steganography, the message is hidden in plain text, 
within another message.  

Steganography has a long history. The Cardan Grille is based 
on an ancient technique where a paper template is created with 
holes in it. When placed over a text, the holes reveal an 
embedded message [2]. In more modern times, data has been 
embedded in the low order bits of images. 

Rivest proposed that a message could be first broken down 
into pieces, with each piece being assigned a valid Message 
Authentication Code (MAC) and a Sequence Number for 
reconstruction. After this, generated “chaff” – false information 
with false MACs and Sequence Numbers, would be embedded 
within the message. The combined message could then be 
transmitted “in the clear” to a receiver. The receiver would know 
the algorithm for checking the validity of MACs, and would 
simply re-assemble the valid message fragments by sequence 
number. 

Chaffing has some curious advantages. Most internet users 
reside in countries with laws requiring assistance to decrypt 
communications, but this unfortunately means that it is not 
inconceivable that encrypted communications may be 
vulnerable to compromised Back Doors [6].  Chaffing may be 
immune to this vulnerability, and can be implemented peer-to-
peer over monitored networks. Estrada (1999) also noted that 
Chaffing could be used to embed a covert communication 
channel within an existing open communication network [3]. 

Chaffing does result in much larger message; for instance, 
[5] noted that a 30KB message will generally grow to about 
75MB. However, if the message were compressed prior to 
chaffing, it would decrease message size. This would present an 
additional advantage, as the resulting message content would be 
near random, and so random chaff would actually be quite 
effective in obscuring the real message. Random chaff could 
enable third parties, with no knowledge of message content, to 
participate in making messages more secure [8]. Samid (2018) 
observed that non-randomized chaff might be even more 
effective [9].  



In this paper we use the concept of chaff to improve the 
security of authentication challenges and responses over open 
networks. We also use Samid’s insight that non-random chaff 
may be more effective at hiding message content. 

The particular problem that we deal with is how to 
authenticate email users over unencryptable Amateur Radio 
Networks [4]. We analyze an existing Challenge-Response 
system and note that passwords can be reliably recovered in just 
16 trials. We then propose a chaffing algorithm based on 
minimizing Information Gain from subsequent responses, 
designed to slow time to discovery. 

II. CIVILIAN RADIO NETWORKS 
Amateur radio spans a wide range of frequencies ranging 

from long wave to high frequency, VHF, UHF and Microwave, 
where licensed radio operators are allowed to transmit and 
receive information. Amateur radio is often used during 
emergencies to provide fall back communications for 
government entities. RACES (Radio Amateur Civilian 
Emergency Services) and ACS (Auxiliary Communication 
Services) are organizations supported by national laws that can 
be activated during emergencies to assist communications in 
natural and man-made disasters. 

In the United States, radio networks are governed by Part 97 
of the FCC regulations, and other countries have similar 
regulations. Under these regulations, amateur radio data 
transmission must not be encrypted. Title 47 Part 97.309.B 
states “data emissions using unspecified digital codes must not 
be transmitted for the purpose of obscuring the meaning of any 
communication” [4]. The reasoning behind this is that amateur 
radio uses public frequencies, and so the data being transmitted 
should be readable by the public.  

This prohibition makes it difficult to support standard 
communication services like email. If a user wants to read email 
over a radio network (because regular cellphone tower or fiber 
networks are down during a disaster), authentication is needed 
to ensure that the proper user is sending and receiving email for 
a given email address.  

The most widely used email system on amateur radio is 
APRS and Winlink – these can be used together, or with Winlink 
alone [12]. This email system has been deployed with great 
success in US Western Wildfires of 2018, Hurricane Katrina, 
Rita and Maria [17], and has a record of deployments as long 
ago as 1991 [16]. 

APRS (Automatic Packet Reporting System) is widely used 
with about 30,000 stations transmitting every hour as of 2019 
[10]. APRS was developed by Bob Bruninga in the 1980s [1], 
and the acronym, APRS is partially derived from his call sign 
WB4APR. APRS is similar in operation to TCP/IP, in that AX25 
packets are broadcast via radio usually on a frequency of 
144.390 MHz. Receiving stations read the message, and then re-
broadcast until the message reaches its intended target, or the 
message decrement drops to 0 in which case the message is 
abandoned as undeliverable. Any radio station can receive and 
interpret the transmitted data [1, 11]. 

Winlink comprises radio enabled servers for managing, 
receiving and transmitting emails, and can be standalone or 

accessed via APRS [12]. Winlink has about 12,000 registered 
email users, and transmits about 100,000 emails per month [14]. 

This paper is mainly concerned with accessing Winlink via 
APRS (APRSLink). In this mode, a radio operator uses APRS 
to send email commands and messages. Receiving radio stations 
pass these messages over the air until a radio station with a 
working internet connection (iGate), is reached. When this is 
reached, it sends the email over the internet to Winlink servers 
which implement the email commands. When sending email 
back to the originating station, the process is reversed [15].   

Authentication via password is challenging over radio 
networks, since the passwords have to be transmitted “in the 
clear”. Winlink creators set up the following challenge-response 
protocol to provide some security for accessing email via APRS:  

(1) A password is created externally on the web. 

(2) When logging in over open radio network, the system 
prompts with “Login [XYZ] where X,Y,Z are three 
character positions in the password. 

(3) The user then responds with the three characters of the 
password in any order, and also adds another three (3) 
characters of “chaff” – random characters that are 
designed to make it harder for external viewers to guess 
the password. 

The password controlling access to the account is currently 
between 6 and 12 characters and comprise an alphabet of upper 
case letters (A-Z), numeric digits (0-9), and symbols 
.!@#$%^&*()_. This alphabet has 48 characters [13]. 

There are two kinds of vulnerabilities with this system: (1) 
One-time Access to services: a malicious party may be able to 
log into email service, and then send/receive emails. (2) 
Password recovery: If the user’s password can be recovered, 
then the attacker can take control of the account, change the 
password, and perhaps even log into other services used by the 
same user. This is a more serious problem. 

This paper will address the problem of how to better secure 
authentication over these networks. We describe the current 
framework including several attack methods. We show that even 
strong passwords under APRSLink/Winlink can be captured in 
as few as 16 observations with 99% probability of success. We 
next discuss an algorithm for generating adversarial “chaff” that 
is designed to minimize information gain for attackers. Well-
selected chaff may be able to prevent unambiguous recovery of 
the password, although the possibilities can be narrowed, and 
the attacker can then still search the remaining possibilities. 
Despite still being vulnerable, this is a meaningful improvement 
over the current system. 

TABLE I.  WINLINK/APRSLINK EMAIL SESSION 

Date time Path Message 
3/17/19 14:17:53 WLNK-1>[CALLSIGN] You have 2 Winlink mail messages pending 
3/17/19 14:18:00 [CALLSIGN]>WLNK-1 l 
3/17/19 14:18:01 WLNK-1>[CALLSIGN] Login [798]: 
3/17/19 14:19:11 [CALLSIGN]>WLNK-1 1UTERW 
3/17/19 14:19:12 WLNK-1>[CALLSIGN] Hello [CALLSIGN] 
3/17/19 14:19:22 [CALLSIGN]>WLNK-1 L 
3/17/19 14:19:22 WLNK-1>[CALLSIGN] 1) 03/17/2019 21:19:20 test from external 371 

bytes 
3/17/19 14:19:23 WLNK-1>[CALLSIGN] 2) 03/17/2019 21:19:20 test 590 bytes 
3/17/19 14:19:50 [CALLSIGN]>WLNK-1 R1 



3/17/19 14:19:51 WLNK-1>[CALLSIGN] test from external 
Fm:SMTP:xxxx@xxxx.com Msg:this is an email 

3/17/19 14:19:52 WLNK-1>[CALLSIGN] transmitted over radio. 
3/17/19 14:20:40 [CALLSIGN]>WLNK-1 ? 
3/17/19 14:20:41 WLNK-1>[CALLSIGN] SP, SMS, L, R#, K#, Y#, F#, P, G, A, I, PR, B (? + 

cmd for more) 
3/17/19 14:21:34 [CALLSIGN]>WLNK-1 ? G 
3/17/19 14:21:35 WLNK-1>[CALLSIGN] Return closest RMS Packet Gateway 

information: G# 
3/17/19 14:21:45 [CALLSIGN]>WLNK-1 G1 
3/17/19 14:21:46 WLNK-1>[CALLSIGN] Gateway: W7ACS-10 CN87UO 5 miles -60 deg, 

430.850 1200b 
3/17/19 14:21:56 [CALLSIGN]>WLNK-1 I 
3/17/19 14:21:57 WLNK-1>[CALLSIGN] APRSLink v5.0 
3/17/19 14:22:18 [CALLSIGN]>WLNK-1 B 
3/17/19 14:22:18 WLNK-1>[CALLSIGN] Log off successful 

 

III. PROBLEM DEFINITION 
Let an APRS/Winlink Email password W be equal to a 

sequence of L characters W = <w1, w2, w3, …, wL> : wi ∈ 
Alphabet. The cardinality of Alphabet=A. The most secure 
passwords will be random sequences, and we use this 
assumption for calculating attack time complexity. (Attack 
times could be reduced further using a dictionary, but this would 
introduce some arbitrariness to these results, and random 
sequences also enables closed form solutions in many cases). 

Let a challenge on iteration t be defined as a set of positions 
Challenget = {p1, p2, …, pP} : pi ∈ [1..L] where P is the number 
of valid positions to send back. Let the response at iteration t be 
defined as the set of P+C characters from the alphabet Responset 
= {a1, a2, …, aP+C} : ai ∈ Alphabet. A valid response is one for 
which the characters in the response are members of the set of 
valid position POS.  Responset = {a1, a2, …, aP+C} : ai ∈POS ∪ 
CHAFF; POS = {𝑤$%, 𝑤$&, …, 𝑤$'}; CHAFF = {c1, c2, …, cC} 
: ¬ (ci ∈  POS) & ci ∈  Alphabet where P is the number of 
requested positions, C is the number of chaff characters to sent 
back. If the system receives an incorrect response to the 
challenge, it will persist with 2 more tries, and after TRIES=3 
consecutive failures, will disallow further access. 

The problem for the Attacker is to use a set of observed 
Authentications (Challenget, Responset) ∈  Authentications to 
infer the user’s underlying password W or otherwise gain access 
to the system by correct response to challenges. The default 
parameters for this problem are Alphabet size A=48, number of 
valid position characters P=3, number of chaff characters C=3, 
password length L = 6, TRIES=3. 

IV. ATTACK I: RANDOM GUESSING 
The expected time to randomly guess a password is 0.5*AL. 

For a length L=6, A=48, random character password, that is E(T) 
= 6,115,295,232 trials. However, since only part of the password 
is requested - P position characters – the probability of one-time-
access is much higher. The probability of access will equal the 
chance of drawing P successes (red balls), from P+C trials, 
given that there are P correct results for the valid positions (red 
balls), and there are A-P incorrect characters (blue balls); a 
Hypergeometric distribution. The expected time E(𝑇)  is the 
inverse of this probability. For P=3, C=3, A=48, 𝐸(𝑇) =

/
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= 833 trials. 

V. ATTACK II: REPLAY 
Given that the network is monitorable, better performance 

can be achieved by recording all of the challenges and their 
successful responses into a codebook. After this is done, the 
attacker can lookup the valid response for any challenge. There 
are Q = L!/(L-P)! unique possible challenges or queries, and so 
storage would comprise every query with the chaff filled 
response Q∙(P+C). The expected time needed to sample all 
challenges will equal: 𝐸(𝑇) = 𝑄 ∙ ∑ 08

<
1=

<>8 = 𝑄 ∙ 𝐻= where 𝐻= 
is the Harmonic sum. Assuming L=6, P=3, it will take 644 trials 
to fill this codebook. It is, however, possible to speed up further 
by using an incomplete codebook, since the user has TRIALS=3 
trials to enter a correct response to a challenge. The formula is 
below where f is the codebook fill rate needed. The trials needed 
to capture challenge response entries that would have 
probability of success crit=1.00, 0.99, 0.95 and 0.90 is 644, 186, 
120 and 93 trials. 

E[T]=𝑄 ∙ @𝐻= −	𝐻(=7C=)D  where 𝑓 = 1 − exp 0JK(87LM<N)
OPQRS

1 	 

VI. ATTACK III: VERSION SPACES 
In order to speed password capture even further, we 

introduce the idea of Version spaces. A Version space is a set of 
hypotheses, comprising a set of disjunctive propositions vi,1 ∨ 
vi,2 ∨ … ∨ vi,A [7]. For each password character position i, define 
an array of size A which represents 1 if the character is possible, 
and 0 if it is not. vi,a ∈ {0,1}: a ∈ A and i ∈ [1..L]. Initialize vi,a 
= 1	∀i,a (all hypotheses are possible) and L = 12. Next every 
time that we observe a challenge and response, update the 
version space as follows: 

vi,a = vi,a  ∧ 0 ∀a ∈ A – (Responset ∪ Challenget) 

L = max (L, max(Challenget)) 

The space needed to store the Version Space is modest; at 
most O(L ∙A) bits where L=12 is the maximum length of 
password. Given default parameters, only 12*48 = 576 bits are 
needed per user in order to execute this attack. The speed at 
which Version Spaces can be used to capture passwords can be 
calculated as follows: Assume that the user is adding random 
chaff. The expected time to recover password can be calculated 
as the expected time to sample all positions multiplied by 
expected time to eliminate chaff: 

𝐸(𝑇) = W𝐿 ∙ Y Z
1
𝑖
\

<>8:^:_

` ∙ aln(1 − 𝑐𝑟𝑖𝑡)/ln Z
𝑃 + 𝐶
𝐴

\l 

Using Stirling’s Approximation, the left-hand side of the 
equation grows as a function of the 𝐿 ∙ ln(𝐿), making this an 
extremely fast algorithm. Given a desired 𝑐𝑟𝑖𝑡=0.90 and 0.99 
chance of recovering password, the time to recovery is equal to 
8.3 and 16.6 trials. 

VII. ADVERSARIAL CHAFF 
We can now use Version Spaces to create chaff designed to 

defeat attackers. A simple algorithm is to select the chaff 
character which results in the least loss of hypotheses. This is, 
equivalently, the character a with the highest match count with 



existing hypotheses: 𝑎:max∑ 𝑣$,r$∈^sS . However, this 
approach won’t protect a critical character whose loss might 
reveal the correct password character. A better approach is to 
calculate the Entropy before 𝐸[𝑣] versus after removal of each 
candidate chaff character 𝐸[𝑣\𝑎] , and select the character 𝑎 
which minimizes Information Gain Δ𝐸[𝑎] 

𝑎:minΔ𝐸[𝑎] = 	𝐸[𝑣] − 𝐸[𝑣\𝑎] 

𝐸[𝑣] = ∑ ∑ Z 8
#z{
\ ∙ ln Z 8

#z{
\r∈|:z{,}>8$∈^sS   

where #𝑣$ = ∑ 𝑣$,rr∈|  

For example, let the correct characters for p1,p2,p3 = (a,b,c). 
The hypothesis space for each position is v1 = {a,b,c,d}; and p1 
= a; v2 = {b,e} and p2=b; v3 = {c,a,b,d} and p3 = c. Password 
Entropy = Entropy([1/4 1/4 1/4 1/4]) + Entropy([1/2 1/2]) + 
Entropy([1/4 1/4 1/4 1/4 ]) = 3.4657. The character with the 
maximal coverage (and so minimizes reduction in hypotheses) 
is “d”. If “d” is selected for chaff then set of hypotheses only 
decrease by 1. v1 = {a,b,c,d}, v2={b}, v3={c,a,b,d}. However the 
password character for position 2 has been revealed exactly as 
“b”. The new PasswordEntropy = [entropy([1/4 1/4 1/4 1/4]) + 
entropy([1]) + entropy([1/4 1/4 1/4 1/4 ])] = 2.7726. The 
Entropy drop is 3.4657-2.7726 = 0.6931. If “e”, instead, is 
selected, then the total hypotheses decrease by 2. However now 
the password character in position 2 remains unknown; it is 
either “b” or “e”. After deployment of “e” as chaff, v1 = {a,b,c}, 
v2={b,e}, v3 = {c,a,b}. The new Password Entropy = 
[entropy([1/3 1/3 1/3]) + entropy([1/2 1/2]) + entropy([1/3 1/3 
1/3])] = 2.8904. Entropy drop is equal to 3.4657-2.8904 = 
0.5753. Although more hypotheses were invalidated, this 
resulted in less information gain. 

Using Adversarial Chaff, it is often possible to reach a state 
where chaff can continue to be selected with Zero Information 
Gain, so leading to a discovery time which is infinite as long as 
Adversarial Chaff is selected each time. We observe this by 
noting some cases: If #𝑣$ > P+C then any valid Response must 
reduce the hypothesis space by at least 1, so Information Gain 
will occur. However if the length of hypotheses for any position 
p drops below P+C, then it may be possible to construct 
Adversarial Chaff which produces 0 Information Gain for 
position p. Two common cases where this occurs are: (1) If 
𝑣$,r = 1: 𝑎 ∈ 𝑃𝑂𝑆 then a Response with any amount of chaff 
will not result in any ambiguity reduction for this position p, 
since all POS characters must be part of the response. Setting 
Responset = POS ∪  CHAFF where CHAFF can be any 
characters, will result in no further hypothesis reduction and 
information gain of 0 each time. (2) If ∑ 𝑣$,rr∈^sS ≤ 𝑃 ∧
∑ 𝑣$,��∈��|�� ≤ �

^
∧ 𝑏 ≠ 𝑎: ∀𝑝   then setting the Response 

equal to POS ∪  {𝑣$,� } will result in no further hypothesis 
reduction for each position p. 

An attacker observing Adversarial Chaff can therefore end 
up stuck in a loop of observations that provide no further 
information. Faced with Zero Information observations, they 
would need to run their own “probes” with their own Responses 
to disambiguate from the alternative hypotheses. They would 
logically pursue this by using “Collusive Chaff” to maximize 
information gain at each iteration. Collusive Chaff uses the same 

Entropy calculation, but each iteration, characters are chosen 
that maximize Information Gain.  

However actively probing radio email services is 
significantly more resource intensive than passively capturing 
passwords by observing challenges and responses. When 
passively mining passwords, the attacker just needs to issue a 
query against online APRS traffic, which is equivalent to 
reading a text file and processing the text to look for logins. They 
can capture an enormous amount of data. For an active probe, 
the attacker would need to actually issue queries to Winlink, 
under an FCC issued radio callsign, and both Winlink and APRS 
have radio bandwidth limitation mechanisms that slow the 
number of queries that can be issued per minute, and also halts 
logon attempts to the service after 3 unsuccessful challenge-
response TRIES. 

Therefore, while an attacker could pursue direct queries, it 
would be slower. Winlink limits login attempts to 3 queries per 
hour, versus passive mining where it is possible to capture 
30,000 messages per hour. In summary, using Adversarial Chaff 
to close off direct capture of passwords from ultra-efficient, 
“passive mining” efforts, is useful for protecting radio operator 
passwords. 

VIII. SIMULATION 
A simulation was implemented to explore how the problem 

scales. The simulation generated a random password string, and 
then ran through different combinations of number of position 
characters P, number of chaff characters C, password length L, 
and Adversarial Chaff versus Random Chaff, recording the 
length of time before the password was recovered, and also if 
the password was recovered. If the hypothesis set was such that 
further chaff couldn’t reduce it further, recovery was halted and 
recovery was reported as 0. 

Longer passwords take longer to crack, as would be expected 
(Table II). However, as we observed in our Version Space 
derivation, time only grows as a function of 𝐿 ∙ ln(𝐿) (Fig. 1). 
For a length L=6 password, simulation average for discovery 
time was 8.5 steps. For a password length L=12, discovery 
grows only slightly to 18.9 observations. 

One might think that adding more random chaff characters 
would slow discovery, since only C=3 chaff characters are being 
used, which leaves a lot of hypotheses being invalidated each 
step. However, increasing the chaff doesn’t fundamentally curb 
the exponential speed with which hypotheses are invalidated. 
Increasing chaff from 3 to 10 only extends the time to recovery 
from 8.5 to 13.2 observations (Table III). High levels of chaff 
also have the side-effect that they increase the chance of 
accidental one-time-access. For instance, 10 chaff characters 
results in an expected one-time-access occurring every 25 
responses. Increasing chaff from 3 to 6 keeps one-time-access 
probability at lower than one time in 100 and is probably a better 
tradeoff.  

Compared to these countermeasures, Adversarial Chaff 
works much better for slowing discovery. For a L=6 password, 
Random chaff results in discovery in 8.5 steps. Adversarial 
Chaff runs for 25 steps forcing limited reduction in hypotheses, 
before the simulation terminates because the password 
hypotheses cannot be further reduced (Table IV). Thus, 



Adversarial Chaff keeps hypotheses alive longer, reaches a set 
of final hypotheses which are ambiguous. 

 

 
Fig. 1. The number of observations needed to recover password using a 
Version Space data structure for tracking viable hypotheses. Time complexity 
scales approximately as a function of L*ln(L); and note the curve above is just 
slightly worse than linear. Even long passwords can be recovered very quickly 
(L∈[3..30]; C=3; P=3; Chaffing Strategy = Random). 

 

TABLE II.  PASSWORD LENGTH VERSUS TIME TO RECOVER USING 
VERSION SPACE ATTACK (L∈[1..30], C= 3, P= 3; CHAFF = RANDOM) 

L 
Password 

length 

E(T) 
Time to 
recover 
passwor

d 

L 
Passwor
d length 

E(T) 
Time to 
recover 
passwor

d 

L 
Passwor
d length 

E(T) 
Time to 
recover 
passwor

d 
3 2.2 11 17.7 21 39.7 
4 4.5 12 18.9 22 37.9 
5 5.5 13 23.1 23 39.8 
6 8.5 14 22.5 24 55.0 
7 9.8 15 27.7 25 50.7 
8 11.1 16 31.4 26 58.7 
9 13.6 17 29.6 27 59.6 
10 17.7 18 35.1 28 53.7 

 

TABLE III.  QUANTITY OF CHAFF VERSUS TIME TO RECOVER USING 
VERSION SPACE ATTACK (L=6, C∈[1..10], P= 3; CHAFF = RANDOM) 

C Number 
of Chaff 

characters 

E(T) Time 
to recover 
password 

1 8.6 
2 7.7 
3 8.5 
4 9.9 
5 8.7 
6 9.6 
7 10.7 
8 11.0 
9 13.1 

10 13.2 
 

TABLE IV.  CHAFFING STRATEGY VERSUS TIME TO RECOVER USING 
VERSION SPACE ATTACK (L∈[3..20], C= 3, P= 3) 

Passwor
d length 
L 

Rando
m 
Chaff 
E(T) 

Adversari
al Chaff* 
E(T) 

Passwor
d length 
L 

Rando
m 
Chaff 
E(T) 

Adversari
al Chaff* 
E(T) 

3 2 1 12 19 26 
4 5 5 13 23 26 
5 6 11 14 23 25 
6 9 25 15 28 27 
7 10 25 16 31 35 
8 11 18 17 30 30 
9 14 20 18 35 33 
10 18 17 19 34 39 
11 18 35 20 33 48 

* Adversarial Chaff simulation code halts when it detects that it can not reduce 
hypothesis space any further. The number reported above is the number of steps 
until this state was reached. 

 

IX. DISCUSSION 
A general solution for secure authentication over radio 

networks is of great interest for the 822,000 radio operators in 
the United States. Access to standard communication methods 
such as email and SMS, generally needs some kind of 
authentication in order to work. FCC Regulations prohibiting 
encryption have been in place for decades, and there is little 
likelihood of regulatory changes. 

However new information security methods are available 
which would enable transmission of information in the clear, but 
whilst still being able to properly establish the identity of the 
user. One promising approach is a Zero Knowledge Proof [18]. 
In this scheme, the user shows that they can solve a problem, 
without revealing the details to the service or other monitoring 
parties. The service asks the user a question, and they answer. 
The information being sent is not a cipher and is sent in the clear. 
However only the user knows the correct answer for the question 
being sent by the service. The fact that one radio operator knows 
an answer to a question, and another does not, should not count 
in any way as encryption and so should be consistent with FCC 
regulations; in the same way that George may know my favorite 
sports team, but Jane may not. 

There are some practical challenges involved in 
implementing Zero Knowledge Proofs and the Chaffing 
approach in this paper, in a way that amateur radio operators 
would be able to use in practice. Radio operators often work in 
poor conditions, and may not always have access to a computer 
to perform the calculations needed to respond to an algorithmic 
challenge. It is possible that a calculation feature could be added 
to Software Defined Radios. However, there is a much easier 
approach. During an emergency, smartphones probably won’t 
be able to access the internet or send/receive calls. However, 
these devices, never-the-less, are superb computers with 
excellent power consumption, and tend to always be on their 
person. They could be used as a portable app for computing a 
response from a challenge sent over the air via radio. 

We’ve shown that Adversarial Chaff can be employed to 
good effect in a domain where clear transmission is required. 
We’ve also shown that it can be used to improve security for 
Winlink/APRS email authentication. Clear transmission 
methods such as Chaffing and Zero Knowledge Proofs are a 
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good match for the requirements of Amateur Radio where clear 
transmission is required. These methods help to ensure that 
messages remain open and readable, and also that authentication 
can be performed so as to support emergency services. 
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